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Magnetoencephalography (MEG)
• Non-invasive, Passive, Silent 

Neural Recordings

• Simultaneous Whole-Head 
Recording (~200 sensors)

• Sensitivity
• high:  ~100 fT (10–13 Tesla)
• low:  ~104 – ~106 neurons

• Temporal Resolution: ~1 ms

• Spatial Resolution
• coarse: ~1 cm
• ambiguous      



Neural Signals & MEG
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•Direct electrophysiological measurement
•not hemodynamic
•real-time

•No unique solution for distributed source
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•Measures spatially synchronized  
cortical activity

•Fine temporal resolution (~ 1 ms)
•Moderate spatial resolution (~ 1 cm)



MEG & Auditory Cortex
• Non-invasive, Passive, Silent Neural 

Recordings

• MEG Response Patterns Time-Locked 
to Stimulus Events

• Robust

• Strongly Lateralized

• Cortical Origin Only (few exceptions)

Pure Tone

Broadband Noise

time (ms)

time (ms)



MEG Responses 

Auditory
Model

to Speech Modulations



Ding & Simon, J Neurophysiol (2012) “Spectro-Temporal Response Function”

(up to ~10 Hz)

MEG Responses 
Predicted by STRF Model

Linear Kernel = STRF

Long duration speech: ~60 s
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STRF

MEG response

STRF prediction

Iteratively adjusting the STRF 
to optimize the prediction

Speech stimulus Prediction error
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Boosting

Ding & Simon, J Neurophysiol (2012)



Frequency Dependence 
of STRF Predictability

Ding & Simon, J Neurophysiol (2012)
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Stimulus Information 
Encoded in Response
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Correlation between 
stimulus envelope and 
reconstructed envelope 
(right hemisphere)

4 bit/s Fano bound

Right Hemisphere
Decoding Accuracy

Left Hemisphere
Decoding Accuracy

1 bit/s Fano bound
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Ding & Simon, J Neurophysiol (2012)
Zion-Golumbic et al., Neuron (2013)

Neural Reconstruction of 
Speech Envelope

2 s

stimulus speech envelope
reconstructed stimulus speech envelope

Reconstruction accuracy comparable to 
single unit & ECoG recordings

(up to ~ 10 Hz)

MEG Responses

...

Decoder
Speech Envelope

500 ms
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Overall Speech 
Reconstruction
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Speech in Stationary Noise

Ding & Simon, J Neuroscience (2013)



Speech in Stationary Noise

Ding & Simon, J Neuroscience (2013)



Speech in Noise: Results
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Noise-Vocoded Speech

Ding, Chatterjee & Simon, NeuroImage (2014)

“in noise” = +3 dB SNR



Noise-Vocoded Speech

Ding, Chatterjee & Simon, NeuroImage (2014)

Intelligibility Reflected only in Delta Band (1– 4 Hz)



Noise-Vocoded Speech: 
Results

• Cortical entrainment to natural speech robust to noise
• Cortical entrainment to vocoded speech is not
• Not explainable by passive envelope tracking mechanisms

- noise vocoding does not directly affect the stimulus envelope



Cortical Speech 
Representations

• Neural Representations: Encoding & Decoding

• Linear models: Useful & Robust

• Speech Envelope only (as seen in MEG)

• Envelope Rates: ~ 1 - 10 Hz

• Intelligibility linked to lower range of 
frequencies (Delta) 



Multiple Cortical Speech 
Representations?

Di Liberto, et al. (2015) Low-Frequency Cortical 
Entrainment to Speech Reflects Phoneme-Level 
Processing

Kayser et al. (2015) Irregular Speech Rate 
Dissociates Auditory Cortical Entrainment, Evoked 
Responses, and Frontal Alpha

Ding et al. (2015) Cortical tracking of hierarchical 
linguistic structures in connected speech
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Speech Over-Representation

Speech Reconstruction  
by Subject

Presacco et al., J Neurophysiol (2016a)
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Speech Over-Representation

Speech Reconstruction  
by Subject
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Aging & Integration Time

Older listeners require more time 
for stimulus reconstruction in noise
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Older listeners are 
worse at 
suppressing 
interference

Older over-
representation in 
auditory cortex 
correlates with lack 
of interference 
suppression
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- Boosts Intelligibility  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Idea
• Latency as Proxy for Cortical Area(s)

‣ Earlier Latency Responses from Heschl’s Gyrus

‣ Later Latency Responses from Planum 
Temporale (and beyond)

• Not just for Response but  
also Reconstruction

‣ Earlier Integration Window  
Reconstructs from HG

‣ Later Integration Window  
Reconstructs from PT (and beyond)
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Where in Cortex is there a 
Segregated Foreground?

Puvvada & Simon, bioRχiv (2017)
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Where in Cortex is there a 
Segregated Foreground?

Late?

Early?

Puvvada & Simon, bioRχiv (2017)



Late Cortical 
Reconstruction

vs.

Puvvada & Simon, bioRχiv (2017) Integration Window over Late Times Only



Late Cortical 
Reconstruction 
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Figure 4   727 

Stimulus Reconstruction Accuracy from Late Neural Responses
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PT represents attended speech with 
much greater fidelity than unattended



Early Cortical 
Reconstruction

vs.

Puvvada & Simon, bioRχiv (2017) Integration Window over Early Times Only



Early Cortical 
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Figure 3   724 
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Figure 3   724 
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Figure 3   724 

Stimulus Reconstruction Accuracy from Early Neural Responses

0 0.05 0.1 0.15
Individual background

0

0.05

0.1

0.15

Fo
re

gr
ou

nd

0 0.05 0.1 0.15
Sum of streams

0

0.05

0.1

0.15

Ac
ou

st
ic

 s
ce

ne

A B

vs.

Puvvada & Simon, bioRχiv (2017)

HG represents attended and unattended 
speech with almost equal fidelity



Where in Cortex is there a 
Segregated Foreground?

Planum
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Early Entire Acoustic Scene 
vs. Individual Streams

vs.

Puvvada & Simon, bioRχiv (2017) Integration Window over Early Times Only



Early Entire Acoustic Scene 
vs. Individual Streams
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Env(Sa +Sb +Sc )

Puvvada & Simon, bioRχiv (2017) Integration Window over Early Times Only



Early Entire Acoustic Scene 
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Figure 3   724 
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HG Represents the (holistic) Acoustic 
Scene,  not Individual Streams



Foreground vs. Background

Puvvada & Simon, bioRχiv (2017) Integration Window over Late Times Only
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PT represents a fused 
background with 

much better fidelity 
than individual 
backgrounds
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Latencies as Proxy for 
Cortical Areas

• Using biologically defined integration windows to 
reconstruct stimulus can distinguish between 
different representations 

‣ Early areas (HG) are best at reconstructing the 
entire acoustic sound scene

‣ Later areas (PT) are best at reconstructing the 
foreground stream, with an integrated 
background

• Modified TRF model performs better than naive
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Twas%the%night%before%Christmas,%when%all%through%the%house%
not%a%creature%was%s6rring,%not%even%a%mouse.%
The%stockings%were%hung%by%the%chimney%with%care,%
in%hopes%that%St.%Nicholas%soon%would%be%there.%%
!!
The%children%were%nestled%all%snug%in%their%beds,%
while%visions%of%sugar%plums%danced%in%their%heads.%
And%Mama%in%her%'kerchief,%and%I%in%my%cap,%
had%just%seDled%our%brains%for%a%long%winter's%nap.%%
%%
When%out%on%the%lawn%there%arose%such%a%claDer,%
I%sprang%from%my%bed%to%see%what%was%the%maDer.%
Away%to%the%window%I%flew%like%a%flash,%
tore%open%the%shuDer,%and%threw%up%the%sash.%%
%%
The%moon%on%the%breast%of%the%newGfallen%snow%
gave%the%lustre%of%midday%to%objects%below,%
when,%what%to%my%wondering%eyes%should%appear,%
but%a%miniature%sleigh%and%eight%6ny%reindeer.%%
%%
With%a%liDle%old%driver,%so%lively%and%quick,%
I%knew%in%a%moment%it%must%be%St.%Nick.%
More%rapid%than%eagles,%his%coursers%they%came,%
and%he%whistled%and%shouted%and%called%them%by%name.%%
%%
“Now%Dasher!%Now%Dancer!%Now,%Prancer%and%Vixen!%
On,%Comet!%On,%Cupid!%On,%Donner%and%Blitzen!%
To%the%top%of%the%porch!%To%the%top%of%the%wall!%
Now%dash%away!%Dash%away!%Dash%away%all!”%%
%%
As%dry%leaves%that%before%the%wild%hurricane%fly,%
when%they%meet%with%an%obstacle,%mount%to%the%sky%
so%up%to%the%houseGtop%the%coursers%they%flew,%
with%the%sleigh%full%of%toys,%and%St.%Nicholas%too.%%
!!
!

!
!

And%then,%in%a%twinkling,%I%heard%on%the%roof%
the%prancing%and%pawing%of%each%liDle%hoof.%
As%I%drew%in%my%head%and%was%turning%around,%
down%the%chimney%St.%Nicholas%came%with%a%bound.%%
%%
He%was%dressed%all%in%fur,%from%his%head%to%his%foot,%
and%his%clothes%were%all%tarnished%with%ashes%and%soot.%
A%bundle%of%toys%he%had%flung%on%his%back,%
and%he%looked%like%a%peddler%just%opening%his%pack.%%
%%
His%eyesGGhow%they%twinkled!%His%dimples,%how%merry!%
His%cheeks%were%like%roses,%his%nose%like%a%cherry!%
His%droll%liDle%mouth%was%drawn%up%like%a%bow,%
and%the%beard%on%his%chin%was%as%white%as%the%snow.%
%%
The%stump%of%a%pipe%he%held%6ght%in%his%teeth,%
and%the%smoke%it%encircled%his%head%like%a%wreath.%
He%had%a%broad%face%and%a%liDle%round%belly,%
that%shook%when%he%laughed,%like%a%bowl%full%of%jelly.%%
%%
He%was%chubby%and%plump,%a%right%jolly%old%elf,%
and%I%laughed%when%I%saw%him,%in%spite%of%myself.%
A%wink%of%his%eye%and%a%twist%of%his%head%
soon%gave%me%to%know%I%had%nothing%to%dread.%%
%%
He%spoke%not%a%word,%but%went%straight%to%his%work,%
and%filled%all%the%stockings,%then%turned%with%a%jerk.%
And%laying%his%finger%aside%of%his%nose,%
and%giving%a%nod,%up%the%chimney%he%rose.%%
%%
He%sprang%to%his%sleigh,%to%his%team%gave%a%whistle,%
And%away%they%all%flew%like%the%down%of%a%thistle.%
But%I%heard%him%exclaim,%'ere%he%drove%out%of%sight,%
"Happy%Christmas%to%all,%and%to%all%a%good%night!"%

Speech Restoration

• Hypothesis: contextual knowledge of missing speech 
can be controlled by exposure to the speech
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Speech Restoration
• Decoding of the 
missing speech 
token improves with 
prior experience

• Performance is a 
considerable 
fraction of that for 
clean speech

Reconstruction from Noise
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Speech Anticipation

• Prior experience speeds subsequent responses
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Summary
• Cortical representations of speech in MEG
- Representation of envelope (up to ~10 Hz)
- Information transfer: a few bits/s
- Robust against a variety of noise types
- Neural representation of perceptual object 

• Over-Representation with Aging
- Reconstruction depends on integration time
- Over-Representation tracks cognitive behavior

• Interfering speech familiarity: neural tracks behavior

• PT (late): Foreground + undifferentiated Background

• HG (early): undifferentiated entire acoustic scene
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