
Dynamic Processing of Background 
Speech at the Cocktail Party: 
Evidence for Early Active Cortical 
Stream Segregation

KU Leuven, 17 January 2020http://www.isr.umd.edu/Labs/CSSL/simonlab

Christian Brodbeck1,  Alex Jiao1, L. Elliot Hong2,  
Jonathan Z. Simon1

1 University of Maryland, College Park 
2 University of Maryland School of Medicine, Baltimore

http://www.isr.umd.edu/Labs/CSSL/simonlab


Outline
• Cocktail party listening

‣ Speech segregation & cortical processing of 
ignored speech

‣ MEG representations of speech

• Methods

• Results

• Summary



Outline
• Cocktail party listening

‣ Speech segregation & cortical processing of 
ignored speech

‣ MEG representations of speech

• Methods

• Results

• Summary



Listening to Speech at 
the Cocktail Party



Listening to Speech at 
the Cocktail Party



Listening to Speech at 
the Cocktail Party



Listening to Speech at 
the Cocktail Party



Representation of ignored speech

Indirect evidence 
‣ Your name may attract attention (Cherry, 1953) 

‣ Background speech is more distracting than other noises (e.g. Brungart, 
2001) 

‣ But less so when you don’t know the language in the background (Van 
Engen & Bradlow, 2007) 

‣ Identity priming from unattended words (Rivenez et al., 2006) 

But 
‣ Retrospective access to no more than one speaker (Kidd et al., 2005)  

‣ Hard to distinguish consistent lexical processing from attention switches 

‣ No time-locked lexical processing based on MEG (Brodbeck et al., 2018) 

Paradigm 
‣ Two speakers, equal loudness (female & male) 

‣ Instructions: Attend to one, ignore the other 

‣ Task: After each segment, answer a question about the content of the 
attended stimulus

4

Cocktail Party Problem
• Acoustic scene
- Acoustic mixture (as in periphery)
- Acoustic sources (talkers)

• Cortical representations
- Early (~50 ms): acoustic mixture (Puvvada & Simon, 2017)

- Later (~100 ms): preferential for attended speech  
 (Ding & Simon, 2012; O’Sullivan et al., 2019)

• How is ignored speech separated from the 
mixture in auditory cortex?
- How is either speech source separated? 
- Passive mechanisms vs. active mechanisms?
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Magnetoencephalography (MEG)
• Non-invasive, passive, silent neural 

recordings from cortex

• Simultaneous whole-head 
recording (~200 sensors)

• Sensitivity
• high:  ~100 fT (10–13 Tesla)
• low:  ~104 – ~106 neurons

• Temporal resolution: ~1 ms

• Spatial resolution
• coarse: ~1 cm
• ambiguous      
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•Measures spatially synchronized  
cortical activity

•Fine temporal resolution (~ 1 ms)
•Moderate spatial resolution (~ 1 cm)
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Spatial Distributions of 
MEG Neural Currents

younger

older

A

older > younger

z

.05

.01

<.001

p

B

Ac
ou
st
ic
en
ve
lo
pe

W
or
d
fre
qu
en
cy

N
or
m
al
iz
ed

ac
tiv
at
io
n

Se
m
an
tic

co
m
po
si
tio
n

Ac
ou
st
ic
en
ve
lo
pe

W
or
d
fre
qu
en
cy

N
or
m
al
iz
ed

ac
tiv
at
io
n

Se
m
an
tic

co
m
po
si
tio
n

A4pca

A3pca

A2pca

A1pca

0 200 400 600
Time [ms]

Acoustic envelope

Brodbeck et al., NeuroImage (2017)
Brodbeck et al.,  Acta Acust united Ac (2018) Das et al.,  NeuroImage (2020)



Spatiotemporal Distribution 
of Neural Currents

-1 Component weight 1

A4pca

A3pca

A2pca

A1pca

0 200 400 600
Time [ms]

Acoustic envelope

Origins of cortical over-representation of speech
in older adults
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Systems Lab

Background
Previous research using magnetoencephalography (MEG) has found that older
adults’ cortical responses to speech track the envelope of the acoustic signal
more robustly than younger adults’ responses (Presacco et al., 2016a&b). This
could have different reasons:

• Low level age-related change, e.g., excitation/inhibition imbalance

▪ Decrease in cortical inhibition could lead to stronger evoked responses (e.g.
Overton & Recanzone, 2016)

• Top-down/strategic processing

▪ Higher level processes recruited to compensate for lower level deficits (e.g.,
degraded input from the periphery) lead to activation in additional brain
regions (e.g., Peelle et al., 2010)

• Attention:

▪ Increased sensory attention due to increased task demands is associated
with stronger sensory responses (Woldorff et al., 1993)

Here we used MEG source localization to determine

• Which parts of the temporal lobe show increased phase-locked activity

• At what latency increased responses occur

Methods
Participants
• 17 younger (18-27 years) and 23 older (60+) adults

Procedure
• 157 axial gradiometer whole head MEG (KIT, Kanazawa, Japan)

• For source space analysis, MEG responses to 2 one-minute long segments of clean speech (The Legend of
Sleepy Hollow); each segment repeated 3 times for a total of 6 minutes of data per subject

• For Decoding analysis, additional segments with two speakers at different signal to noise ratios, task to attend
to one and ignore the other

Stimulus reconstruction (Presacco et al., 2016b)
• Speech stimulus represented as envelope of the analytic signal (1-8 Hz)

• Linear 500 ms kernel trained to predict stimulus from all MEG data (1-8 Hz)

• Coordinate descent algorithm (David et al., 2007)

• Early stopping based on cross-validation

Source localization
• Temporal signal space separation

• Zero-phase FIR filter (1-8 Hz)

• Average brain model, scaled to match each participant’s head (FreeSurfer fsaverage)

• Minimum norm estimates at virtual source dipoles equally spaced across the white matter surface, oriented
perpendicularly to the cortical surface

• Speech stimulus represented as envelope of the analytic signal

• Linear 500 ms kernel trained for each source dipole to predict estimated current time course from the stimulus

• Basis of 50 ms Hamming windows

• Coordinate descent algorithm (David et al., 2007)

• Early stopping based on cross-validation

Statistical evaluation
• Overall model fit:

• Correlation coefficient between predicted and actual source time course (Fisher z-transformed to correct
distribution for fixed end-points at -1 and 1)

• Bias corrected using model in which the predictor variable was temporally misaligned with the response

• Age difference with repeated-measures t-test at each source dipole,

• Threshold-free cluster enhancement (Smith and Nichols, 2009)

• Estimation of the null distribution by permuting group membership 10.000 times

• TRF:

• All values transformed to their absolute value, to prevent negative and positive currents from cancelling out

• Weighted average in the region of significant difference in z-values

• TRF amplitude time course analyzed with repeated-measures t-test, TFCE and permutation distribution as
above

• TRF peaks

• Peak windows determined based on inspection of TRF time course

• Average of the absolute TRF in window for each participant

• Smoothed with Gaussian kernel (STD = 5 mm)

• Tested as above

Brain responses
Distributed minimum norm estimates (MNE) used to estimate electrical activity
at virtual current source dipoles across the temporal lobes. Activity at these
source dipoles was modeled as a response to the acoustic envelope of speech
using a linear convolution model (David et al., 2007; Brodbeck et al., 2018).

Method: Temporal response functions

Stimulus reconstruction
MEG responses to one minute long segments of continuous speech, under
natural listening conditions (excerpts from audiobook)

Method: Stimulus reconstruction

TRF amplitudes, averaged in time windows around prominent peaks,
suggest different anatomical origins

• ~30 ms: older adults’ response significantly enlarged; region of significant
group difference consistent with main difference outside core auditory cortex

• ~100 ms: group difference not significant

• ~150 ms: non-significantly enhanced response peak in younger adults

• ~200 ms: additional peak in older adults’ TRFs with wide-spread distribution

Conclusions
Compared to younger adults, older adults’ cortical responses track the acoustic
envelope of speech more robustly.

• Older adults’ responses to clean speech differ from younger adults’ responses
at different TRF peaks with different latencies, suggesting multiple reasons for
increased tracking

• An early ~30 ms difference is consistent with a low-level processing change

• Localization difference suggests non-primary auditory cortex involvement

• Consistent with excitatory-inhibitory imbalance, leading to rapid activation in
a larger area

• A late ~200 ms difference is consistent with recruitment of additional
processing resources
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The signal from the MEG sensors is used jointly to reconstruct the acoustic
envelope of the speech stimulus

• The reconstructed stimulus is the convolution of the kernel (“decoder”) with
the MEG signal

• Reconstruction accuracy is an estimate of how much information the
responses contain about the stimulus

▪ Measured as correlation between actual and reconstructed stimulus

• The convolution model used for reconstruction is primarily sensitive to phase-
locked brain activity

Older adults: higher stimulus reconstruction
accuracy

Older adults’ cortical responses allow more accurate reconstruction of the
speech envelope than younger adults’ (from Presacco et al., 2016b)

• Holds across different listening conditions (clean speech and speech with
background speaker at difference SNRs)

• Suggests that older adults’ cortical responses carry more information about
the speech envelope

• Where in the cortex and at which latencies are older adults’ responses
amplified?

The signal at each virtual source dipole (illustrated as red/green/blue lines)
is modeled as linear convolution of the speech envelope with a temporal
response function (TRF)

• Model fit is evaluated by how well the signal at each dipole can be modeled
(correlation coefficient)

Localized response prediction accuracy

Older adults exhibit stronger responses to clean speech in non-primary
auditory cortex

• Older adults’ MEG responses reflected the acoustic envelope more strongly in
a region of the left temporal lobe

• Localization consistent with a region outside of core auditory cortex

• Lateralization was not significant (p = .285)

• The amplitude of the temporal response functions (TRFs) in the significant
region was analyzed for a better understanding of the timing of the effects

Increased TRF amplitude at multiple peaks

Response function peaks

TRF amplitude (averaged in significant region shown above) is significantly
larger in older adults at early (~30 ms) and late (~200 ms) peaks

• Younger adults seem to have similar but weaker peaks at ~30 and ~100 ms

• A third peak occurs in younger adults at ~150 ms already; older adults’ ~200
ms peak could be an enlarged and delayed version
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The signal from the MEG sensors is used jointly to reconstruct the acoustic
envelope of the speech stimulus

• The reconstructed stimulus is the convolution of the kernel (“decoder”) with
the MEG signal

• Reconstruction accuracy is an estimate of how much information the
responses contain about the stimulus

▪ Measured as correlation between actual and reconstructed stimulus

• The convolution model used for reconstruction is primarily sensitive to phase-
locked brain activity

Older adults: higher stimulus reconstruction
accuracy

Older adults’ cortical responses allow more accurate reconstruction of the
speech envelope than younger adults’ (from Presacco et al., 2016b)

• Holds across different listening conditions (clean speech and speech with
background speaker at difference SNRs)

• Suggests that older adults’ cortical responses carry more information about
the speech envelope

• Where in the cortex and at which latencies are older adults’ responses
amplified?

The signal at each virtual source dipole (illustrated as red/green/blue lines)
is modeled as linear convolution of the speech envelope with a temporal
response function (TRF)

• Model fit is evaluated by how well the signal at each dipole can be modeled
(correlation coefficient)

Localized response prediction accuracy

Older adults exhibit stronger responses to clean speech in non-primary
auditory cortex

• Older adults’ MEG responses reflected the acoustic envelope more strongly in
a region of the left temporal lobe

• Localization consistent with a region outside of core auditory cortex

• Lateralization was not significant (p = .285)

• The amplitude of the temporal response functions (TRFs) in the significant
region was analyzed for a better understanding of the timing of the effects

Increased TRF amplitude at multiple peaks

Response function peaks

TRF amplitude (averaged in significant region shown above) is significantly
larger in older adults at early (~30 ms) and late (~200 ms) peaks

• Younger adults seem to have similar but weaker peaks at ~30 and ~100 ms

• A third peak occurs in younger adults at ~150 ms already; older adults’ ~200
ms peak could be an enlarged and delayed version
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Temporal Response Functions
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Onset Properties:
• Local increase in acoustic energy
• Prominent responses in auditory cortex
• Promote perceptual grouping
• Promote auditory object perception
• Can better distinguish between mixture and individual sources

Cervantes Constantino et al., 2017
Hamilton et al., 2018
Daube et al., 2019

Bregman et al., 1994
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Methods
Data set already used and described in Brodbeck, 2019 

26 adults, mean age 45 (range 22 - 61)

8 one-minute-long segments (4 male + 4 female speakers) from A Child’s 

History of England by Dickens

16 one-minute-long segments constructed from the same passages with two 

competing speakers, male + female, equal loudness


- Subjects’ instructions: Attend to one, ignore the other (counter-balanced)


- After each segment, answer question about content of the attended stimulus

Distributed MNE source estimates, restricted to Region of Interest (below)


- Sources in fsaverage brain (individual anatomical MRI not used)

Multivariable TRF at each source element via boosting (10 ms resolution; 50 ms 

Hamming window basis)

Significance of each representation with respect to shuffled stimulus x 3 

Threshold-free cluster enhancement, 10,000 permutation null distribution 
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STRF for mixture
• + large peak (72 ms)
• – smaller peak (126 ms)
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STRF for mixture
• + large peak (72 ms)
• – smaller peak (126 ms)
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Not all onsets are the same
• Source onsets can be masked by other source
- “Masked onset” 
- Typically occurs when other (masking) source sustained
- ➔ No onset apparent in mixture despite source onset

• Source onsets may not be masked by other source
- “Overt onset” 
- Onset apparent in both mixture and source
- Other source does not interfere

• Overt onsets allow segregation via filtering

• Covert onsets more difficult to unmix
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Auditory Cortex and  
Overt vs. Masked Onsets 
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• Similar to onset 
responses above

• Early response to 
sources not 
distinguishable

• Later response only 
to attended source, 
not ignored

Overt Onset 
Responses

• Smaller peaks (≠0)
• Early peak shows 

effect of attention
• and …

Masked Onset 
Responses



Masked onsets engage 
extended cortical processing
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• Masked onset peaks 
delayed relative to overt 
onset peaks

- early masked peaks 
delayed ~20 ms

- later (attended) 
masked peak delayed 
~45 ms

• More time spent 
processing masked peaks

• Evidence for early active 
processing in segregation
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Summary I
• Spectrotemporal acoustic onsets robustly 

represented in auditory cortex
- Onsets explain more variance when onsets and 

envelopes are allowed to compete 

• Onsets in both attended and ignored speech 
represented in auditory cortex, in addition to 
onsets in acoustic mixture

• Early onset processing does not distinguish 
between attended and ignored speech
- except masked onsets (attended > ignored):  

early effects of selective attention



• Auditory cortex “un-masks” masked onsets
- Related to neural filling-in?

• Unmasking requires additional processing time
- SNR-dependent delays well known,  

but here shown to be dynamic

• Scene segregation not merely passive 
spectrotemporal filtering
- Scene segregation employs active processing

at each time moment is based on the response in a 500 ms time
window starting from that moment. When this window size is
allowed to vary, the reconstruction results show a strong depen-
dency on the integration time (Fig. 4B). At the poorer SNRs (e.g.,
!3 to !9 dB), the decoding results improve substantially when
the window of integration is allowed to increase in size from 100
to 200 ms. In the !6 dB to 6 dB SNR range, the reconstruction
accuracy is affected by SNR if the integration window is "200 ms
(p " 0.003, one-way ANOVA) but not affected by SNR if the
window is !200 ms (p # 0.07, one-way ANOVA). This demon-
strates the importance of long-term (# 100 ms) integration in
decoding speech in a strong noise background.

TRF
To explicitly characterize how the spectrotemporal features of the
stimulus are encoded cortically as a function of time, and by
cortical area, for each MEG sensor we estimate a TRF, which
characterizes the time course of neural activity evoked by a unit
power increase of the stimulus (Ding and Simon, 2012b). Al-
though the neural reconstruction integrates responses over a
specified duration, the TRF describes the neural response at each
time lag between the stimulus and the response through decon-
volution. In the TRF analysis, the intensity contrast of the stim-
ulus is normalized separately for each SNR condition, to focus on
stimulus-dependent response properties separate from the (dra-
matic) contrast gain control. With the stimulus thus normalized,
an SNR-independent TRF amplitude would demonstrate a neu-
ral representation independent of the mean and variance (i.e.,
contrast) of the stimulus intensity.

The instantaneous TRF power, averaged over all MEG sen-
sors, is shown in Figure 5A, top. The onset latency of the TRF (the
earliest time point when the TRF amplitude passes the 99th per-
centile of the prestimulus TRF amplitude) is prolonged as the
noise level rises (Fig. 5A, bottom). This latency elongation is sta-
tistically significant because the relationship between onset la-
tency and SNR, when fitted by a line, has a significantly negative
slope (p " 0.001, bootstrap). The earliest two components of the
TRF, called the M50TRF and M100TRF, are extracted and further
analyzed.

A bilateral equivalent current dipole (ECD) based neural
source localization shows that the ECD source location of the
M100TRF is consistent with the ECD source location of the M100

evoked by a tone pip (no significant difference, p # 0.3, paired t
test), whereas the ECD position of the M50TRF is on average 11
mm more anterior than that of the M100 in both hemispheres
(p " 0.02 for the right hemisphere, p " 0.003 for the left hemi-
sphere, paired t test). The ECD position of the M50TRF is also on
average 10 mm (13 mm) more anterior than that of the M100TRF

in the left (right) hemisphere (statistically significant in the right
hemisphere only, p " 0.02, paired t test). The TRFs at the ECD
position of M50TRF and M100TRF are shown (stacked vertically by
SNR condition) in Figure 5B. The TRFs are averaged over the two
hemispheres because very similar results are seen in each. The
amplitude of the M50TRF decreases continuously with SNR,
whereas the amplitude of the M100TRF is insensitive to SNR until
the SNR decreases to !9 dB. A linear regression analysis shows
that, in between !6 dB and 6 dB SNR, the amplitude of the
M50TRF decreases 1.0 $ 0.2 dB (significantly negative, p " 0.001,
bootstrap), whereas the amplitude of the M100TRF changes 0.0 $
0.2 dB (not significantly) each 1 dB SNR change. The same re-
gression analysis reveals that the latency of the M50TRF increases
with decreasing SNR, with a change of 3.0 $ 0.6 ms/dB.

Temporal modulations within frequency channels
In auditory cortex, temporal modulations in different carrier fre-
quency channels, called the narrowband envelopes, are repre-
sented by different neural populations, at least in tonotopically
organized areas. These different populations, however, cannot be
resolved using the current neural recording technique, and their
responses are mixed in the MEG recording as a large-scale re-
sponse following the broadband envelope of speech (Ding and
Simon, 2012a). In the analyses above, the noise-robust neural
representation contrasts the noise-sensitive broadband envelope.
There is a possibility, however, that only the broadband envelope
is vulnerable to noise, whereas the narrowband envelopes, which
cortical neurons actually encode, are more robust. If this were the
case, the noise-robust neural representation would naturally arise
from the extraction of narrowband envelopes that occur in the
cochlea rather than central mechanisms, such as contrast gain
control and changes in modulation sensitivity. To rule out this
possibility and to draw a possible link between the large-scale
neural representation of the broadband envelope and the local
neural network level representation of narrowband envelopes, in
the following, we examine how the narrowband envelopes of
speech are degraded by noise and whether the degradation is
similar to the degradation to the broadband envelope.

As is shown by Figure 6A, as the level of the background noise
rises, the narrowband envelopes in all carrier frequency channels
are weakened, and the loss in power is more severe at lower mod-
ulation rates. This effect is consistent with what is observed for
the broadband envelope although quantitatively weaker. There-
fore, the fact that the neural response is not weakened by noise at
low frequencies (Fig. 3B) cannot be the result of only selective
encoding of the narrowband envelopes in some carrier frequency
channels but requires contrast gain control within frequency
channels.

The background noise reduces the dynamic range of the nar-
rowband envelopes of speech and also distorts its shape. The
shape distortion is quantified using the correlation between the
envelope of a speech-noise mixture and the envelope of the orig-
inal clean speech. As is shown in Figure 6B, the noise-induced
distortion in the narrowband envelope is more severe than the
distortion in the broadband envelope, for the stationary noise
used in the current study. Furthermore, the noise-induced dis-
tortion is more severe at higher modulation rates, for both the

Figure 5. SNR-dependent temporal response function. A, The instantaneous TRF power,
summed over sensors. The TRFs from all SNR conditions are stacked vertically. The latency at
which the TRF amplitude surpasses the noise floor is shown in the bottom. The TRF onset is
significantly delayed by noise. B, The TRFs at the neural sources of the M50TRF and M100TRF

(top). The amplitude of the M50TRF decreases when the level of noise increases (compare with
the stimulus contrast index illustrated in Fig. 1B), whereas the amplitude of the M100TRF re-
mains stable until !9 dB SNR. Error bars indicate SEM over subjects.
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accuracy is affected by SNR if the integration window is "200 ms
(p " 0.003, one-way ANOVA) but not affected by SNR if the
window is !200 ms (p # 0.07, one-way ANOVA). This demon-
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To explicitly characterize how the spectrotemporal features of the
stimulus are encoded cortically as a function of time, and by
cortical area, for each MEG sensor we estimate a TRF, which
characterizes the time course of neural activity evoked by a unit
power increase of the stimulus (Ding and Simon, 2012b). Al-
though the neural reconstruction integrates responses over a
specified duration, the TRF describes the neural response at each
time lag between the stimulus and the response through decon-
volution. In the TRF analysis, the intensity contrast of the stim-
ulus is normalized separately for each SNR condition, to focus on
stimulus-dependent response properties separate from the (dra-
matic) contrast gain control. With the stimulus thus normalized,
an SNR-independent TRF amplitude would demonstrate a neu-
ral representation independent of the mean and variance (i.e.,
contrast) of the stimulus intensity.

The instantaneous TRF power, averaged over all MEG sen-
sors, is shown in Figure 5A, top. The onset latency of the TRF (the
earliest time point when the TRF amplitude passes the 99th per-
centile of the prestimulus TRF amplitude) is prolonged as the
noise level rises (Fig. 5A, bottom). This latency elongation is sta-
tistically significant because the relationship between onset la-
tency and SNR, when fitted by a line, has a significantly negative
slope (p " 0.001, bootstrap). The earliest two components of the
TRF, called the M50TRF and M100TRF, are extracted and further
analyzed.

A bilateral equivalent current dipole (ECD) based neural
source localization shows that the ECD source location of the
M100TRF is consistent with the ECD source location of the M100

evoked by a tone pip (no significant difference, p # 0.3, paired t
test), whereas the ECD position of the M50TRF is on average 11
mm more anterior than that of the M100 in both hemispheres
(p " 0.02 for the right hemisphere, p " 0.003 for the left hemi-
sphere, paired t test). The ECD position of the M50TRF is also on
average 10 mm (13 mm) more anterior than that of the M100TRF

in the left (right) hemisphere (statistically significant in the right
hemisphere only, p " 0.02, paired t test). The TRFs at the ECD
position of M50TRF and M100TRF are shown (stacked vertically by
SNR condition) in Figure 5B. The TRFs are averaged over the two
hemispheres because very similar results are seen in each. The
amplitude of the M50TRF decreases continuously with SNR,
whereas the amplitude of the M100TRF is insensitive to SNR until
the SNR decreases to !9 dB. A linear regression analysis shows
that, in between !6 dB and 6 dB SNR, the amplitude of the
M50TRF decreases 1.0 $ 0.2 dB (significantly negative, p " 0.001,
bootstrap), whereas the amplitude of the M100TRF changes 0.0 $
0.2 dB (not significantly) each 1 dB SNR change. The same re-
gression analysis reveals that the latency of the M50TRF increases
with decreasing SNR, with a change of 3.0 $ 0.6 ms/dB.

Temporal modulations within frequency channels
In auditory cortex, temporal modulations in different carrier fre-
quency channels, called the narrowband envelopes, are repre-
sented by different neural populations, at least in tonotopically
organized areas. These different populations, however, cannot be
resolved using the current neural recording technique, and their
responses are mixed in the MEG recording as a large-scale re-
sponse following the broadband envelope of speech (Ding and
Simon, 2012a). In the analyses above, the noise-robust neural
representation contrasts the noise-sensitive broadband envelope.
There is a possibility, however, that only the broadband envelope
is vulnerable to noise, whereas the narrowband envelopes, which
cortical neurons actually encode, are more robust. If this were the
case, the noise-robust neural representation would naturally arise
from the extraction of narrowband envelopes that occur in the
cochlea rather than central mechanisms, such as contrast gain
control and changes in modulation sensitivity. To rule out this
possibility and to draw a possible link between the large-scale
neural representation of the broadband envelope and the local
neural network level representation of narrowband envelopes, in
the following, we examine how the narrowband envelopes of
speech are degraded by noise and whether the degradation is
similar to the degradation to the broadband envelope.

As is shown by Figure 6A, as the level of the background noise
rises, the narrowband envelopes in all carrier frequency channels
are weakened, and the loss in power is more severe at lower mod-
ulation rates. This effect is consistent with what is observed for
the broadband envelope although quantitatively weaker. There-
fore, the fact that the neural response is not weakened by noise at
low frequencies (Fig. 3B) cannot be the result of only selective
encoding of the narrowband envelopes in some carrier frequency
channels but requires contrast gain control within frequency
channels.

The background noise reduces the dynamic range of the nar-
rowband envelopes of speech and also distorts its shape. The
shape distortion is quantified using the correlation between the
envelope of a speech-noise mixture and the envelope of the orig-
inal clean speech. As is shown in Figure 6B, the noise-induced
distortion in the narrowband envelope is more severe than the
distortion in the broadband envelope, for the stationary noise
used in the current study. Furthermore, the noise-induced dis-
tortion is more severe at higher modulation rates, for both the

Figure 5. SNR-dependent temporal response function. A, The instantaneous TRF power,
summed over sensors. The TRFs from all SNR conditions are stacked vertically. The latency at
which the TRF amplitude surpasses the noise floor is shown in the bottom. The TRF onset is
significantly delayed by noise. B, The TRFs at the neural sources of the M50TRF and M100TRF

(top). The amplitude of the M50TRF decreases when the level of noise increases (compare with
the stimulus contrast index illustrated in Fig. 1B), whereas the amplitude of the M100TRF re-
mains stable until !9 dB SNR. Error bars indicate SEM over subjects.
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