Dynamic Processing of Background Speech at the Cocktail Party: Evidence for Early Active Cortical Stream Segregation

Christian Brodbeck¹, Alex Jiao¹, L. Elliot Hong², Jonathan Z. Simon¹

¹ University of Maryland, College Park ² University of Maryland School of Medicine, Baltimore

http://www.isr.umd.edu/Labs/CSSL/simonlab

KU Leuven, 17 January 2020

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

Cocktail Party Problem

- Acoustic scene
 - Acoustic mixture (as in periphery)
 - Acoustic sources (talkers)

Cocktail Party Problem

- Acoustic scene
 - Acoustic mixture (as in periphery)
 - Acoustic sources (talkers)
- Cortical representations
 - Early (~50 ms): acoustic mixture (Puvvada & Simon, 2017)

Cocktail Party Problem

- Acoustic scene
 - Acoustic mixture (as in periphery)
 - Acoustic sources (talkers)
- Cortical representations
 - Early (~50 ms): acoustic mixture (Puvvada & Simon, 2017)
 - Later (~100 ms): preferential for attended speech (Ding & Simon, 2012; O'Sullivan et al., 2019)

Cocktail Party Problem

- Acoustic scene
 - Acoustic mixture (as in periphery)
 - Acoustic sources (talkers)
- Cortical representations

- Early (~50 ms): acoustic mixture (Puvvada & Simon, 2017)
- Later (~100 ms): preferential for attended speech (Ding & Simon, 2012; O'Sullivan et al., 2019)
- How is ignored speech separated from the mixture in auditory cortex?
 - How is either speech source separated?
 - Passive mechanisms vs. active mechanisms?

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

Magnetoencephalography (MEG)

- Non-invasive, passive, silent neural recordings from cortex
- Simultaneous whole-head recording (~200 sensors)
- Sensitivity
 - high: ~100 fT (10-13 Tesla)
 - low: $\sim 10^4 \sim 10^6$ neurons
- Temporal resolution: ~1 ms
- Spatial resolution
 - coarse: ~I cm
 - ambiguous

Neural Signals & MEG

Photo by Fritz Goro

- Direct electrophysiological measurement
 not hemodynamic
 - •real-time
- •No unique solution for distributed source
- •Measures spatially synchronized cortical activity
- •Fine temporal resolution (~ 1 ms)
- Moderate spatial resolution (~ 1 cm)

Time Course of MEG Responses

Ding & Simon, J Neurophysiol (2009) Wang et al., J Neurophysiol (2012)

Spatial Distributions of MEG Neural Currents

Brodbeck et al., Acta Acust united Ac (2018)

Das et al., NeuroImage (2020)

Spatiotemporal Distribution of Neural Currents

Brodbeck et al., NeuroImage (2017) Brodbeck et al., Acta Acust united Ac (2018)

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF to produce the response from the stimulus:

 \mathcal{M} lesp

Actual response

Predicted response (Stimulus * TRF)

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF to produce the response from the stimulus:

Estimated TRF

Resp.

Actual response

Predicted response (Stimulus * TRF)

Spectro-Temporal Response Functions

Spectro-Temporal Onset vs Envelope

Spectro-Temporal Onset vs Envelope

Spectro-Temporal Onset vs Envelope

Onset Properties:

- Local increase in acoustic energy
- Prominent responses in auditory cortex
- Promote perceptual grouping
- Promote auditory object perception

Hamilton et al., 2018 Daube et al., 2019

Cervantes Constantino et al., 2017

Bregman et al., 1994

• Can better distinguish between mixture and individual sources

Spectro-Temporal Response Functions

Spectro-Temporal Response Functions

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

Methods

Data set already used and described in Brodbeck, 2019

26 adults, mean age 45 (range 22 - 61)

- **8 one-minute-long segments** (4 male + 4 female speakers) from A Child's History of England by Dickens
- 16 one-minute-long segments constructed from the same passages with two competing speakers, male + female, equal loudness
 - Subjects' instructions: Attend to one, ignore the other (counter-balanced)
 - After each segment, answer question about content of the attended stimulus

Distributed MNE source estimates, restricted to Region of Interest (below)

- Sources in *fsaverage* brain (individual anatomical MRI not used)

Multivariable TRF at each source element via boosting (10 ms resolution; 50 ms Hamming window basis)

Significance of each representation with respect to shuffled stimulus x 3 Threshold-free cluster enhancement, 10,000 permutation null distribution

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

Successful Response Prediction

Significant prediction

Source Localization consistent with auditory cortex (Heschl's gyrus, superior temporal Gyrus)

Successful Response Prediction

Significant prediction

Source Localization consistent with auditory cortex (Heschl's gyrus, superior temporal Gyrus)

Onset & Envelope STRFs

Onset STRF

- Typical response pattern
 - + early peak
 - later peak

Envelope STRF

Less well-defined

ROI for TRF analysis

Cocktail Party Listening

Acoustic mixture

Attended source

Ignored source

Potential representations

- Acoustic mixture (input)
- Recovered source signals
 - Attended source
 - Ignored source(?)

Cocktail Party Listening

Acoustic mixture

Attended source

Ignored source

- Acoustic mixture (input)
- Recovered source signals
 - Attended source
 - Ignored source(?)

6 STRFs(!) Envelope STRF + Onset STRF for each of Mixture, Attended, Ignored (8 bands each)

Cocktail Party STRFs

Cocktail Party STRFs

Cocktail Party STRFs

.05 .01 .001 *p*

Cocktail Party Onset STRFs

STRF for mixture

- + large peak (72 ms)
- smaller peak (126 ms)

Cocktail Party Onset STRFs

- Source onsets can be masked by other source
 - "Masked onset"
 - Typically occurs when other (masking) source sustained
 - \rightarrow No onset apparent in mixture despite source onset
- Source onsets may not be masked by other source
 - "Overt onset"
 - Onset apparent in both mixture and source
 - Other source does not interfere
- Overt onsets allow segregation via filtering
- Covert onsets more difficult to unmix

- Onsets in one source can be masked by other
 - Typically occurs when masking source sustained
 - \rightarrow No onset apparent in mixture despite source onset

- Onsets in one source can be masked by other
 - Typically occurs when masking source sustained
 - \rightarrow No onset apparent in mixture despite source onset

- Onsets in one source can be masked by other
 - Typically occurs when masking source sustained
 - \rightarrow No onset apparent in mixture despite source onset

- Onsets in one source can be masked by other
 - Typically occurs when masking source sustained
 - \rightarrow No onset apparent in mixture despite source onset

Masked onsets and active vs. passive segregation

- Can we distinguish active segregation mechanisms from passive?
 - Masked onsets cannot be processed passively

Masked onsets and active vs. passive segregation

- Can we distinguish active segregation mechanisms from passive?
 - Masked onsets cannot be processed passively

Masked & Overt onset streams generate separate STRFs

Auditory Cortex and Overt vs. Masked Onsets

Overt Onset Responses

- Similar to onset responses above
- Early response to sources not distinguishable
- Later response only to attended source, not ignored

Auditory Cortex and Overt vs. Masked Onsets

Overt Onset Responses

- Similar to onset responses above
- Early response to sources not distinguishable
- Later response only to attended source, not ignored

Auditory Cortex and Overt vs. Masked Onsets

Overt Onset Responses

- Similar to onset responses above
- Early response to sources not distinguishable
- Later response only to attended source, not ignored

Masked Onset Responses

- Smaller peaks (≠0)
- Early peak shows effect of attention
- and ...

Masked onsets engage extended cortical processing

- Masked onset peaks delayed relative to overt onset peaks
 - early masked peaks delayed ~20 ms
 - later (attended)
 masked peak delayed
 ~45 ms
- More time spent processing masked peaks
- Evidence for early active processing in segregation

Outline

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

Outline

- Cocktail party listening
 - Speech segregation & cortical processing of ignored speech
 - MEG representations of speech
- Methods
- Results
- Summary

Summary I

- Spectrotemporal acoustic onsets robustly represented in auditory cortex
 - Onsets explain more variance when onsets and envelopes are allowed to compete
- Onsets in both attended and ignored speech represented in auditory cortex, in addition to onsets in acoustic mixture
- Early onset processing does not distinguish between attended and ignored speech
 - except masked onsets (attended > ignored):
 early effects of selective attention

Summary II

- Auditory cortex "un-masks" masked onsets
 - Related to neural filling-in?
- Unmasking requires additional processing time
 - SNR-dependent delays well known, but here shown to be dynamic

- Scene segregation not merely passive spectrotemporal filtering
 - Scene segregation employs active processing

Summary II

- Auditory cortex "un-masks" masked onsets
 - Related to neural filling-in?
- Unmasking requires additional processing time
 - SNR-dependent delays well known, but here shown to be dynamic

- Scene segregation not merely passive spectrotemporal filtering
 - Scene segregation employs active processing

Thank You

Acknowledgements

Current Lab Members & Affiliates

Christian Brodbeck

Alex Presacco Proloy Das Lien Decruy Jason Dunlap Theo Dutcher Kevin Hu Dushyanthi Karunathilake Joshua Kulasingham David Nahmias Peng Zan

Past Lab Members & Affiliates

Nayef Ahmar Sahar Akram Murat Aytekin Francisco Cervantes Constantino Maria Chait Marisel Villafane Delgado Kim Drnec Nai Ding Victor Grau-Serrat Julian Jenkins Pirazh Khorramshahi Natalia Lapinskaya Huan Luo Sina Miran Mahshid Najafi Krishna Puvvada Jonas Vanthornhout Ben Walsh Yadong Wang Juanjuan Xiang Jiachen Zhuo

Collaborators

Pamela Abshire Samira Anderson Behtash Babadi Catherine Carr Monita Chatterjee Alain de Cheveigné Stephen David Didier Depireux Mounya Elhilali Tom Francart Jonathan Fritz Michael Fu L. Elliot Hong

Stefanie Kuchinsky

Stefanie Kuchinsky Steven Marcus Cindy Moss David Poeppel Shihab Shamma

Past Undergraduate Students

Nicholas Asendorf Ross Baehr Anurupa Bhonsale Elizabeth Camenga Katya Dombrowski Kevin Hogan **Alex Jiao** James Williams

These slides available at: ter.ps/simonpubs

Funding NIH (*NIDCD*, *NIA*, *NIBIB*); NSF; DARPA; UMD; USDA