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Abstract. Thespectrotemporal receptive field(STRF) is a functional descriptor of the linear processing of time-
varying acoustic spectra by the auditory system. By cross-correlating sustained neuronal activity with the dynamic
spectrum of a spectrotemporally rich stimulus ensemble, one obtains an estimate of the STRF. In this article,
the relationship between the spectrotemporal structure of any given stimulus and the quality of the STRF esti-
mate is explored and exploited. Invoking the Fourier theorem, arbitrary dynamic spectra are described as sums of
basic sinusoidal components—that is, moving ripples. Accurate estimation is found to be especially reliant on the
prominence of components whose spectral and temporal characteristics are of relevance to the auditory locus under
study and is sensitive to the phase relationships between components with identical temporal signatures. These and
other observations have guided the development and use of stimuli with deterministic dynamic spectra composed of
the superposition of many temporally orthogonal moving ripples having a restricted, relevant range of spectral scales
and temporal rates. The method, termedsum-of-ripples, is similar in spirit to the white-noise approach but enjoys the
same practical advantages—which equate to faster and more accurate estimation—attributable to the time-domain
sum-of-sinusoids method previously employed in vision research. Application of the method is exemplified with
both modeled data and experimental data from ferret primary auditory cortex (AI).
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1. Introduction

Two primary identifying features of a sound are its
spectral content and its temporal behavior. In the phys-
iological investigation of the auditory system, it has of-
ten been assumed, by the sole use of descriptors such as
spectral tuning and modulation rate tuning, that each of
these qualities are processed independently. However,
it is becoming more widely recognized that this is not,
in general, a well-advised assumption. As evidenced
by most any time-frequency representation (Cohen,
1995) (for example, the spectrogram), the particular
time-dependency of the spectrum (that is, thedynamic

spectrum)1 seems to set a sound’s character. Thus,
it seems likely that the particular conjunction of a
sound’s spectral and temporal features, and not simply
their separate existence, is ultimately of interest to a
hearing system.

Such information is readily available to the mam-
malian auditory system, from the very transduction
process. There, the cochlea transduces the impinging
sound wave into a frequency-ordered (tonotopic) time-
varying pattern of activity on the auditory nerve (AN)
(Shamma, 1985; Ruggero, 1992). Following the exam-
ple of the cochlea and moving to a domain where the
spectral and temporal aspects of sounds are represented
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jointly (thespectrotemporal domain), one expects to be
able to more effectively characterize those acoustic pat-
terns that afferent neurons are most responsive to. The
resulting description of the auditory system’s input-
to-output transformation—thespectrotemporal recep-
tive field (STRF)—is one of both dimensions inter-
twined and is potentially more complete than that
provided by the two marginal descriptions (Aertsen and
Johannesma, 1980; Aertsen and Johannesma, 1981b;
Eggermont et al., 1981; Hermes et al., 1981; Cohen,
1995).

STRF-like descriptions of auditory processing have
been used in a number of studies. All are endowed with
a common, linear functionality, of the general form

r (t) =
∫ ∫

STRF(τ, f ) · S(t − τ, f ) dτ d f , (1)

which describes a convolution in time and a correla-
tion in frequency between the STRF and the dynamic
spectrum of the stimulus. Intuitively, at any particular
instantt , a neuron’s responser is given by the corre-
lation of the STRF with the stimulus’s (time-reversed)
dynamic spectrumS around that instant. This opera-
tion is repeated for allt , as the spectrum continues
to evolve. Thus, the STRF as acts as a filter, produc-
ing the strongest responses to spectrotemporal features
that most resemble its own structure. In doing so, the
STRF can be thought of both as a time-dependent spec-
tral weighting function (orreceptive field) and as a
frequency-dependent dynamical filter. Figure 1 should
assist in the visualization of these concepts.

The STRF has been measured with a variety of
methods. These differ in the type of stimuli used—for
example, white noise (Hermes et al., 1981; Eggermont
et al., 1983b; Epping and Eggermont, 1985; Eggermont
and Smith, 1990; Backoff and Clopton, 1991; Clopton
and Backoff, 1991; Kim and Young, 1994; Nelken
et al., 1997; Carney and Friedman, 1998), natu-
ral vocalizations (Aertsen and Johannesma, 1981a;
Yeshurun et al., 1985; Schafer et al., 1992; Theunis-
sen et al., 1998), moving ripples (Kowalski et al.,
1996a, 1996b; Depireux et al., 1998b; Escab´ı et al.,
1998), and tone pulses (Aertsen and Johannesma,
1981a; Epping and Eggermont, 1985; deCharms et
al., 1998; Kvale et al., 1998; Theunissen et al.,
1998). They also differ in the representation of the
dynamic spectrum—for example, the Wigner dis-
tribution (Eggermont and Smith, 1990; Kim and
Young, 1994; Nelken et al., 1997), Rihaczek distri-
bution (Hermes et al., 1981; Epping and Eggermont,

1985; Eggermont and Smith, 1990; Backoff and
Clopton, 1991; Clopton and Backoff, 1991), the
short-time Fourier transform (Yeshurun et al., 1985;
Schafer et al., 1992), filter bank output (Aertsen
and Johannesma, 1981a; Eggermont et al., 1983b;
Carney and Friedman, 1998), and the spectrotempo-
ral envelope (Kowalski et al., 1996a, 1996b; deCharms
et al., 1998; Depireux et al., 1998b; Escab´ı et al., 1998;
Kvale et al., 1998). Finally, they differ in the analysis
method—for example, reverse correlation (Aertsen and
Johannesma, 1981a; Hermes et al., 1981; Eggermont
et al., 1983b; Epping and Eggermont, 1985; Eggermont
and Smith, 1990; Backoff and Clopton, 1991; Clopton
and Backoff, 1991; Schafer et al., 1992; Kim and
Young, 1994; Nelken et al., 1997; Carney and
Friedman, 1998; deCharms et al., 1998; Escab´ı et al.,
1998; Kvale et al., 1998; Theunissen et al., 1998),
Laguerre polynomial correlation (Yeshurun et al.,
1985), and sinusoidal steady-state analysis (Kowalski
et al., 1996a, 1996b; Depireux et al., 1998b).

A majority of STRF measurements have been made
by stimulating with Gaussian white noise (GWN) and
performing a kind of input-output correlation called
spectrotemporal reverse correlation. The method is
similar to classical reverse correlation (de Boer, 1967;
de Boer and de Jongh, 1978), with which the portions
of a stimulus waveform preceding the occurrence of a
neuron’s action potentials are averaged. With spectro-
temporal reverse correlation, rather, a representation of
the stimulus’s dynamic spectrum is averaged instead,
as illustrated in Fig. 2. The motivation in both cases is
typically of a stochastic nature—to preserve only those
stimulus patterns consistently causing a neuron to spike
while eventually averaging out other, randomly occur-
ring patterns.

This general methodology, through which the func-
tionality of a neuron is explored by correlating its re-
sponses with various functionals of a GWN stimu-
lus, is referred to as thewhite-noise approach. The
white-noise approach has intuitive appeal, but it is far
from ad hoc; in fact, it is closely related to thecross-
correlation method(Lee and Schetzen, 1965) for devel-
oping a Wiener-series model of a system. The Wiener
series and the closely related Volterra series have been
used extensively to model auditory (and other sensory)
system function, particularly in its peripheral aspects
(Marmarelis and Marmarelis, 1978; Eggermont, 1993).
These studies, and the scrutiny they’ve received, pro-
vide valuable background for studies of the STRF.

Despite the promise of the representation, it is fair
to say that the ability of STRF estimates gleaned under
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Figure 1. A: The STRF reflects many aspects of auditory system function—such as spectral tuning, latency, memory, refractoriness, frequency-
modulation direction selectivity, and modulation rate tuning—in one compact form. A cross-section of the STRF at a particular latency and
frequency yields a characterization of the spectral and dynamical processing of the system that, in general, depends on the latency and frequency
chosen. The specific interdependence of these features conspires to produce enhanced responsiveness to certain spectrotemporal patterns, as
exemplified in B and C.B: The stimulus in B is the dynamic spectrum of a speech segment (“Why am I here?”) produced with a cochlea-like
filter bank and plotted on a log-frequency scale. The flipped, overlaid STRF depicts the correlation operation performed at each timet to produce
the response, C, as given by Eq. (1). Characterizing this neuron with a single peak excitatory frequency would not be sufficient; pronounced
activation (arrows) requires the presence of specific spectrotemporal patterns resembling the (flipped) STRF.

Figure 2. For spiking systems, spectrotemporal reverse correlation can be viewed as a spike-triggered average. Using white-noise stimulation,
the average stimulus preceding a spike resembles the STRF after a sufficient number of spikes are recorded.
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white-noise stimulation to quantitatively describe the
auditory system has been limited. The estimates are
often excessively noisy, computationally burdensome,
and above all unable to predict responses to novel
stimuli. Unfortunately, these difficulties are more se-
vere for the more central auditory areas, where the
STRF description is presumed to be most valuable. In
fact, to our knowledge there are no accounts of a suc-
cessful application of the white-noise method in any
auditory locus higher than the midbrain and in mam-
mals no higher than the lateral-superior olive (LSO).
In the face of this, J. Eggermont speculated in his 1993
review of the subject (Eggermont, 1993, p. 198) that
“it is expected that Wiener or Volterra-like character-
ization methods could largely fail for central auditory
areas such as auditory cortex.”

There is growing evidence, however, that this fore-
cast may have been premature. Actually, Wiener and
Volterra-like methods have in time proved to be suc-
cessful; butlike is the operative suffix, for the extreme
generality of GWN has had to be compromised in favor
of alternative stimuli. These “improved” stimuli differ
from GWN in that they are defined by their dynamic
spectra, which is often designed with the guidance
of the known functionality of the auditory area under
study. While still spectrotemporally rich, the stimuli
have a more specific structure than that of GWN, they
are more effective in eliciting responses, and they have
yielded striking results from mammalian primary audi-
tory cortex (AI) and inferior colliculus (IC) (Kowalski
et al., 1996a, 1996b; Depireux et al., 1998b; Escab´ı
et al., 1998; Kvale et al., 1998; deCharms et al., 1998;
Shamma et al., 1998). Although thorough quantita-
tive analyses of much of the data have not yet surfaced,
some of these studies have yielded STRF estimates that
are well capable of predicting neurons’ responses to
novel stimuli (Kowalski et al., 1996b; Depireux et al.,
1998b; Shamma et al., 1998).

The approach specifically advocated and developed
here, termedsum-of-ripples, might be thought of as an
extension of the time-domain sum-of-sinusoids method
(Victor and Knight, 1979; Victor and Shapley, 1980)
into the spectrotemporal domain. This approach uses
moving ripples(Kowalski et al., 1996a; Depireux et al.,
1998b), broad-band sounds that are modulated sinu-
soidally both in spectrum and in time, as basic stimulus
building blocks. Thus invoking the formalism of two-
dimensional Fourier analysis, and exploiting the linear-
ity of the STRF functional (1) the use of single moving
ripples (Kowalski et al., 1996a, 1996b; Depireux et al.,

1998b) and white noise are seen as opposite ends of
a continuum of all possible stimuli. Furthermore, the
Fourier-series description of dynamic spectra, and of
the STRF, allows for a general reevaluation of the spec-
trotemporal reverse correlation method itself, through
which basic structural conditions that arbitrary stim-
uli must meet, in order to allow for an accurate STRF
estimate, are easily obtained.

These conditions are ultimately used to guide the
synthesis of special stimuli, produced by summing to-
gether specific temporally—orthogonal combinations
of ripples that are both general in their exploratory
power and tailored to a particular auditory locus. It is
shown that cross-correlating the neural response with
these ripple combinations can quickly build an accu-
rate estimate of the STRF. This has been found to be
true both in principle and in practice; the method has
been applied in ferret AI and IC (Shamma et al., 1998;
Depireux et al., 1998a). Some of the AI results will be
considered here for illustrative purposes. However, an
exhaustive analysis of the physiology will be treated
elsewhere.

The organization of this article is as follows. First,
the STRF is further examined both empirically and
theoretically, as it has evolved, with the aid of the
Volterra and Wiener functional expansions. In this con-
text, some challenges posed by the measurement of the
STRF are discussed. In Section 3, the Fourier trans-
forms of arbitrary dynamic spectra and STRFs are
defined and elaborated. This allows the problem of
spectrotemporal reverse correlation to be considered
within a general framework, which subsequently moti-
vates the sum-of-ripples construction in Section 4.
Finally, the results are summarized, and some addi-
tional views concerning the link between the sum-of-
ripples method and other methods are offered.

2. Background

2.1. The Functional Expansions of Volterra
and Wiener

The use of functional expansions for nonlinear sys-
tems modeling is essentially due to the pioneering work
of Volterra (1930). As summarized by M. Korenberg
(Korenberg and Hunter, 1996), “A functional,F , trans-
forms values of the input defined over the input domain
(e.g., time) into a value of the output defined at a single
point of the output domain (e.g., at a fixed instant).”
Typically, then, the distinction between functions and
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functionals echoes that, for example, between systems
without and with memory.

For a large class of systems, it is possible to expand
the functional relationship,F , between an input,s, and
an output,r , into a sum ofn elementary functionals:

r = F [s] = K0[s] + K1[s] + · · · + Kn[s], (2)

wheren, the order of the system, is conceivably in-
finite. Deciding on the form of theKi ’s involves a
fundamental compromise between notions of separate
functionality, favored in theoretical studies, and, on the
other hand, separately measurable properties, necessi-
tated by the experimental approach. This compromise
is typified by the relationship between the Volterra and
Wiener functional expansions.

The Volterra series expansion (Volterra, 1930;
Korenberg and Hunter, 1996) prescribes for theKi ’s
homogeneous polynomial functionals of orderi . In
this aspect it is analogous to the Taylor series expansion
of functions. If, for example, the input is merely a func-
tion of time, the Volterra functionals take the form of
progressively higher-order temporal convolutions with
progressively higher-order auto-products of the input
process,

Ki [s(t)]=
∫
· · ·
∫
vi (τ1, . . . , τi )

· s(t − τ1) · · · s(t − τi )dτ1 · · ·dτi , (3)

so that each term in the Volterra series describes,
through theVolterra kernelsvi (τ1 · · · τi ) (which are
weighting functions analogous to the Taylor series co-
efficients), how the output of the system at any partic-
ular instant depends on a particular order of the input.

The first-order Volterra functional is the most
familiar,

K1[s(t)] =
∫
v1(τ ) · s(t − τ) dτ, (4)

as it is the standard time-domain description of a lin-
ear time-invariant system with impulse responsev1(τ ).
The higher-order functionals follow from a straightfor-
ward generalization of this equation.

There are, however, practical difficulties in the direct
measurement of the Volterra kernels, especially for a
system of unknown order (as is the auditory system).
Fortunately, these difficulties can be largely circum-
vented if theKi ’s are designed to be mutually orthogo-
nal with respect to a particular input function, in which

case they, unlike the Volterra functionals, can each be
measured separately.

N. Wiener (1958) detailed a particularly useful se-
ries of functionals that are closely related to Volterra’s
but that are orthogonal with respect to a GWN input.
As a by-product, the Wiener functionals are inhomo-
geneous: they no longer fully describe the response to
a single-orderi of the input process but also include
contributions from all higher orders of the same parity
(i + 2, i + 4, · · ·). Furthermore, they can depend on
power level of the input (Eggermont, 1993; Korenberg
and Hunter, 1996). Thus, the Wiener and Volterra ker-
nels are generally different. Holistically, though, the
two descriptions are equivalent, and the Wiener series
can be converted to the stimulus-invariant Volterra
series, provided that all of the Wiener kernels have been
identified. This is often done because the Volterra
series is in general more amenable to interpretation
(Aertsen and Johannesma, 1981b; Boyd et al., 1983).

It is important to note the conditions by which
this type of characterization is valid. According to
Wiener (1958), “We are considering non-linear net-
works of a certain deadbeat character.” The characteri-
zation of the brain as “deadbeat” may be alarming, but
in formalizing Wiener’s slang one finds that the audi-
tory system actually fulfills many, though not strictly
all, of the requirements. For example, the response
must only depend on a finite extent of the input do-
main or at least exhibit fading dependence (Korenberg
and Hunter, 1996). This seems to be met by the current
knowledge of the auditory system. However, the char-
acteristics of the system must not change with time, a
condition not so obviously met, since it excludes adap-
tive processing. Also, due to practical concerns, the
system is required to have a sufficiently low-order ex-
pansion: it must satisfy a continuity requirement, so
that small changes at its input result in small changes
at its output. While this requirement is not strictly met
by a spiking system, it can be satisfied by substituting
the smoother spike probability, or the spike rate, as the
response (Johnson, 1980).

2.2. Kernel Estimation by Reverse Correlation

Two decades after the Wiener series was devel-
oped, Y. Lee and M. Schetzen (1965) published a
simple and influential algorithm, now known as the
cross-correlation method, for estimating the first- and
higher-order Wiener kernels of a system by applying
GWN to the input and computing a series of first- and
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higher-order input-output cross-correlations. One of
the many merits of their work was that it allowed for
a solid relation to be drawn between the Wiener series
and the experimental practice of reverse correlation
(de Boer, 1967) being pioneered contemporaneously
in physiological studies of cat auditory nerve fibers.

It was subsequently recognized that the reverse-
correlation function is basically identical to the first-
order cross-correlation function and, hence, the first-
order Wiener kernel of the system (Eggermont et al.,
1983c). Therefore, the reverse-correlation function
does not in general solely reflect linear processing but
instead should be considered the best (in a mean-square
error sense) linear fit to the observed input-output trans-
formation (Palm and Popel, 1985; Eggermont, 1993).
In any case, the reverse-correlation function has been
useful in describing cochlear transduction at middle to
low acoustic frequencies (de Boer and de Jongh, 1978;
Carney and Yin, 1988).

However, if the response of a neuron is not pre-
cisely synchronized, orphase locked, to fine details of
the stimulus waveform, a first-order stimulus-response
cross-correlation is not productive: the first-order
Wiener kernel is negligible (Eggermont, 1993). In the
mammalian AN, phase locking is limited to neurons
tuned to frequencies below about 4 to 6 kHz (Ruggero,
1992; Kim and Young, 1994). This limit is progres-
sively lower for higher auditory loci, and by AI phase
locking to broad-band noise is rarely observable. Thus,
for a large fraction of neurons, particularly in more cen-
tral areas, the classical reverse correlation function has
proved to be useless (Hermes et al., 1981; Clopton
and Backoff, 1991; Kim and Young, 1994), and mod-
els of their behavior have had to be shifted to higher-
order functionals of the stimulus. Fortunately, the re-
verse correlation methodology can be extended for this
purpose; now, various higher-order functionals of the
stimulus are to be correlated with the response.

2.3. The Role of the STRF
in a Functional Expansion

In particular, the second-order Volterra-Wiener
functional,

K2[s(t)] =
∫ ∫

v2(τ1, τ2) · s(t − τ1) s(t − τ2) dτ1 dτ2

=
∫ ∫

v̂2(τ, σ ) · s
(

t − τ − σ
2

)
× s

(
t − τ + σ

2

)
dτ dσ, (5)

here rewritten withτ = 1
2(τ1+ τ2) andσ = τ2− τ1 for

convenience, has proven to be a primary descriptor of
auditory neurons that do not phase lock (Eggermont,
1993; Temchin et al., 1995; Yamada et al., 1997; van
Dijk et al., 1997; Yamada and Lewis, 1999). Fortu-
nately, it has an interpretation by which its superseding
importance in higher auditory loci is intuitive.

Like K1, K2 essentially describes a linear system;
but instead of the raw stimulus waveform, its input
receives the time-dependent (deterministic) autocorre-
lation of the stimulus,s(t − σ

2 ) s(t + σ
2 ). Although the

autocorrelation may be difficult to interpret, it is closely
related, through a single Fourier transform, to a large
class of time-frequency representations via theWigner
distribution(Eggermont, 1993; Cohen, 1995),

W(t, f ) =
∫

s∗
(

t − σ
2

)
s

(
t + σ

2

)
· exp(− j 2πσ f ) dσ, (6)

where∗ denotes complex conjugation (though all stim-
uli considered here are real) andj =√−1. The Wigner
distribution may be thought of as a generalized spec-
trogram. Such representations of dynamic spectra are
strongly reminiscent of the activity at the output of
the peripheral auditory system (Shamma, 1985). Thus,
K2 is expected to have a special applicability for de-
scribing the processing being performed in the afferent
auditory pathway (Aertsen and Johannesma, 1981b;
Hermes et al., 1981).

Indeed, using (6), and defining

STRFK2(τ, f )
1=
∫
v̂2(τ, σ ) · exp(− j 2πσ f ) dσ,

(7)

K2 can be rewritten:

K2[s(t)] =
∫ ∫

STRFK2(τ, f ) ·W(t − τ, f ) dτ d f,

(8)

where it is noted that, for a real valued stimulus, both
STRFK2 andW are real and symmetric aroundf = 0.

Therefore, the second-order Volterra functional cor-
responds to a linear system that processes the Wigner
time-frequency representation of the stimulus, with an
STRFK2 that is the Fourier transform (acrossτ2− τ1)
of the second-order Volterra kernel. This provides the
link betweenK2 and the generalized STRF functional
(1); since many other time-frequency representations
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S can be considered linearly filtered versions of the
Wigner distribution (Cohen, 1995), it can be shown
that if (1) describes the second-order processing of the
system, STRFK2 in (8) is, in general, a filtered ver-
sion of the STRF. However, the converse relationship
is not neccessarily true, but depends on the particular
representationS. See Appendix A for additional details
about this topic.

Given the relative importance ofK2 overK1 in cen-
tral loci, it is tempting to disregard the stimulus wave-
form completely and instead treat the dynamic spec-
trum as the effective stimulus (Eggermont et al., 1983b;
Yeshurun et al., 1985; Nelken et al., 1997), though
this is only strictly valid ifall odd-order functionals,
with respect to the waveform, can also be neglected
(Aertsen and Johannesma, 1981b). Characteristically,
the dynamic spectrum is sectioned into multiple, tono-
topically arrayed inputs, representing energy fluctu-
ations within discrete frequency bands (Eggermont
et al., 1983b; Yeshurun et al., 1985; Schafer et al.,
1992). The STRF, instead of being associated with the
second-order functional, is then readily associated with
the first-order Volterra functional of a multiple-input
system, composed of the collection of the system’s lin-
ear impulse responses to these inputs (which are them-
selves non-linearly related to the waveform).

It is important to remember that spectrotemporal re-
verse correlation (with an appropriate time-frequency
representation) yields the single Fourier transform of
the second-order Wiener kernel (Eggermont et al.,
1983c; Eggermont, 1993), which is generally different
from the Volterra kernel. Nevertheless, because the
highest two Volterra and Wiener functionals are always
identical, this distinction is not relevant as long as the
employed system description doesn’t extend, in par-
ity, more than one order beyond the STRF. As such,
the STRF is more conveniently treated in the Volterra
sense (Aertsen and Johannesma, 1981b); there exists
for every neuron a stimulus-invariant STRF, and any
attempt to measure it results in an STRFestimatethat
may contain various errors due the particular stimuli
used (such as white noise) and the measurement
technique (such as cross-correlation).

2.4. Some Problems with White-Noise Stimulation

The white-noise approach to STRF estimation initially
delivered promising results. After sufficient spike-
triggered averaging, there were consistent indications

of specific regions in the spectrotemporal domain of
elevated or diminished intensity preceding the occur-
rence of spikes (Hermes et al., 1981; Eggermont et al.,
1983b). Unfortunately, after some additional use of
the method, a number of consistent problems were
also apparent. In addition to troubles with noisiness
(Hermes et al., 1981; Eggermont and Smith, 1990;
Backoff and Clopton, 1991; Kim and Young, 1994)
and weighty computational requirements (Eggermont
et al., 1983c; Eggermont and Smith, 1990; Clopton and
Backoff, 1991; Kim and Young, 1994), it was reported
that STRF estimates were only in weak agreement
with measurements made with other, more established
methods (such as tones) (Backoff and Clopton, 1991;
Clopton and Backoff, 1991; Kim and Young, 1994).
Most important, the few attempts to use the measured
STRFs to predict neurons’ responses to stimuli sub-
stantially different from GWN failed (Eggermont et al.,
1983a; Nelken et al., 1997). Consequently, it has been
concluded that the STRF holds only limited, qualita-
tive value (Eggermont et al., 1983a; Eggermont, 1993;
Nelken et al., 1997).

However, it seems likely that some of the trouble
was not with the STRF but instead stemmed from the
choice of stimulus, or, more specifically, the finite-
length pseudo-random noise substituted for the phys-
ically unrealizable GWN. The primary problems with
this stimulus are threefold, concerning its statistical in-
adequacies, its weak response-driving capability, and
its difference from natural sounds.

The cross-correlation method strictly requires GWN
due to its statistical properties, but finite-length noise
sequences can deviate considerably from this white
ideal, resulting in considerable estimation error, es-
pecially for higher-order kernels (Swerup, 1978;
Eggermont, 1993). Efforts are often made to improve
some of the statistical properties of the waveform—for
example, using inverse-repeat stimuli (Swerup, 1978),
or the transformation method (Eggermont, 1993).
However, the statistical adequacy of thedynamic spec-
trum, paramount for accurate estimation of the STRF, is
not assured by these efforts (Eggermont et al., 1983b).

Furthermore, in more central loci, copious estima-
tion error is brought about by the weak responses
evoked by stationary broad-band noise. Fulfilling the
continuity requirement, described above, necessitates
using some average-response measure, such as the
peri-stimulus time histogram (PSTH) (Johnson, 1980).
However, as low spike probabilities are overshadowed
by the considerable variance associated with the PSTH
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estimate (Johnson, 1980), not to mention the extrane-
ous variability associated with biological neural sys-
tems themselves (Arieli et al., 1996; Azouz and Gray,
1999). In overcoming this, either a prolonged stimulus
must be used, which greatly increases both the mea-
surement and analysis duration, or many repetitions of
a shorter noise sequence must be used, in which case
its statistical properties are eroded further (Eggermont
et al., 1983b; Clopton and Backoff, 1991).

Finally, the reverse-correlation estimate is only
strictly valid with respect to the particular stimulus used
for its derivation. Even in the mild presence of mea-
surement noise and system nonlinearities, as the dis-
tance between a test stimulus and the stimulus used to
identify the system increases, the error in a truncated
functional series characterization can be expected to
become substantial (Johnson, 1980; Palm and Popel,
1985). Again, this is particularly problematic for the
most central areas because the increasingly specific
spectrotemporal patterns that neurons are responsive
to are increasingly improbably generated by stationary
random noise. Thus, the inability of STRF estimates
gleaned under GWN stimulation to generalize to the
distant natural stimuli is understandable and suggests
that the use of stimuli with natural properties may
be more productive for central loci (Aertsen and
Johannesma, 1981a; Palm and Popel, 1985; Yeshurun
et al., 1985; Nelken et al., 1997).

2.5. Alternatives to White Noise

Due to the problems commonly associated with the
white-noise approach, a great deal of work has been de-
voted to developing improved stimuli and analyses for
Volterra and Wiener kernel estimation. For example,
if there is little control over the stimuli, alternatives
to cross-correlation, such as Korenberg’s fast exact or-
thogonalization method (Korenberg and Hunter, 1996)
and Marmarelis’s improved Laguerre polynomial ex-
pansion method (Marmarelis, 1993), have been devel-
oped to allow for the “best” possible kernel estimates
for arbitrary stimulation. Such improvements generally
come, however, at the expense of computational com-
plexity (Korenberg and Hunter, 1996).

If control over the stimuli is afforded, it seems to
be more beneficial to focus on improving its struc-
ture. Consequently, much of the complexity involved
in characterizing the system is delegated to the stimu-
lus design, allowing for accurate results to be obtained
during an experiment, using simple and fast

correlation-based algorithms (Victor, 1979; Sutter,
1992). Furthermore, using elementary knowledge
about the system, the extreme generality of GWN can
be greatly reduced, resulting in stimulation of greater
overall relevance (Sutter, 1992). A simple example,
taken from classical reverse correlation, is the reduction
of the stimulus bandwidth to match the expected input
bandwidth of the system. Such improvements are ac-
complished most efficiently with deterministic, rather
than stochastic, stimuli, like binary sequences (Sutter,
1992) and sums of sinusoids (Victor and Knight, 1979;
Victor and Shapley, 1980), for whom functional expan-
sions well approximating the Wiener and Volterra se-
ries have been formulated (Victor, 1991; Sutter, 1992).

To improve the quality of STRF estimation beyond
what is possible with the white-noise approach, such
considerations should be applied not to the waveform
but to the dynamic spectra of stimuli. However, without
a general enough description of dynamic spectra and its
relationship to the reverse-correlation estimate, it is not
clear how the modifications are best made. In the next
section, a quite general formulation of the problem is
elaborated by taking advantage of the linearity of the
STRF functional and invoking Fourier theory.

3. Fourier Analysis
in the Spectrotemporal Domain

In the previous sections, the spectrotemporal domain
was established as a plausible input domain for cen-
tral auditory neurons, from both intuitive and rigorous
standpoints. Some problems associated with the use
of white-noise stimulation for the measurement of the
input-output relationships of such neurons were dis-
cussed. Finally, it was recognized that the implementa-
tion of improvements wants for a universal descriptive
framework for dynamic spectra. That is the aim of this
section.

Regardless of the specific nature of the stimulus, the
common goal in the measurement of the STRF is to
characterize thelinear processing of dynamic spectra.
Evaluation of the STRF functional may exploit the prin-
ciple of superposition obeyed by all linear systems—
namely, the response to any stimulus is the sum of the
responses to its constituent parts. One may thus use the
STRF to form an alternative transfer-function descrip-
tion, in which the responses to a basic set of stimuli
are made explicit. If this basic set can, in combina-
tion, be used to describe all stimuli of practical interest,
then determining the system’s response simply involves
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determining the stimulus’s composition in terms of
these basic parts.

A common means of uniquely breaking a stimulus
into parts is provided by the Fourier series (Papoulis,
1962), with whichanystimulus can be approximated
to any level of precision with a sum of sinusoidal
components of various amplitudes, frequencies, and
phases. Performing the Fourier decomposition of dy-
namic spectra thus engenders a particularly valuable
transfer function and, subsequently, allows the form of
the stimulus-response cross-correlation function to be
derived for arbitrary stimulation.

3.1. The Spectrotemporal Domain

The spectrotemporal domain is the input domain of the
STRF functional (1). It is also the space on which dy-
namic spectra, and the STRF, are to be defined. In ac-
cordance with typical notions of auditory system func-
tion, we will consider a logarithmic frequency axis,

x = log2
f

f0
,

wherex denotes the number of octaves abovef0> 0,
the lowest frequency considered to be relevant to the
system.2 The x axis is thought of as a spatial axis,
corresponding to the auditory sensory epithelium—that
is, the tonotopic axis (Pickles, 1988).

The system is expected to have finite memory and
finite frequency-tuning bandwidth, within 0≤ x≤ X,
0≤ τ ≤ T , whereX is the stimulus bandwidth (in units
of octaves) andT is the stimulus duration. In other
words, it is expected that the STRF is zero outside of
these bounds, which is a prerequiste for the use of a
Volterra model. Since all stimuli are, for all practical
purposes, of finite duration and finite bandwidth, we are
always considering a finite region of the spectrotempo-
ral domain.

3.2. Ripples and Ripple Decomposion

Perhaps the most radical (and pertinent) departure from
the white-noise approach for STRF estimation is that of
dynamic ripple analysis(Kowalski et al., 1996a, 1996b;
Depireux et al., 1998b), with which STRFs of neurons
in ferret AI were measured via stimulation with broad-
band sounds having dynamic spectra of the general

form

S(t, x) = a0+ a cos{2π(wt +Äx)+ ψ}. (9)

These functions describe for each frequency loca-
tionx, a sinusoidal modulation of the level around some
meana0, at a rate of|w| cycles per second. The relative
phases of the modulations at differentx’s produce a si-
nusoidal spectral profile with a periodicity ofÄ cycles
per octave (c/o) which, over time, drifts across the spec-
tral axis with a velocity determined by the magnitude
of w and a direction determined by the polarity of the
product ofw andÄ. These sounds are namedmoving
ripples. The parameterw is sometimes called therip-
ple velocityor rateandÄ is theripple frequency, ripple
peak density, or spectral scale. The dynamic spectra
of a several moving ripples, produced with different
combinations ofw andÄ, are illustrated in Fig. 3.

Moving ripples are useful because they form the ba-
sis for the Fourier decomposition of the spectrotem-
poral domain—that is, over the finite extentt ∈ [0, T ]
and x ∈ [0, X], the real functionS is completely and
uniquely specified by the Fourier series (Papoulis,
1962):

S(t, x) =
∞∑

k=−∞

∞∑
l=−∞

ak,l

× exp{ j [2π(wkt +Äl x) + ψk,l ]}, (10)

where

wk = k

T
, Äl = l

X
. (11)

The terms in this sum come in complex-conjugate
pairs, such thatak,l =a−k,−l ,wk=−w−k,Äl =−Ä−l ,
andψk,l =−ψ−k,−l . Given that cos(α) = 1

2[exp( jα)
+ exp(− jα)], each such pair corresponds to a single
moving ripple (9).

Since the discrete set of velocities and densities
(wk, Äl ) of the stimulus components used in (10) are
fixed byT andX, dynamic spectra are fully described
by the amplitudesak,l and phasesψk,l of these compo-
nents. As such, they form a representation equivalent
to S, and can, in fact, be computed fromS via the
double Fourier transform,

S̃(w,Ä) = 1

TX

∫ T

0

∫ X

0
S(t, x)

· exp{− j 2π(wt +Äx)} dx dt
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Figure 3. The dynamic spectra of various moving ripples are illustrated (left), along with their locations in the ripple domain (right). The
points in the upper two quadrants (in black) of the ripple domain are sufficient for characterizing a ripple; points in the lower two quadrants (in
gray) are given by the complex conjugates of those in the upper two. Quadrant one, where the product ofw andÄ is positive, corresponds to
downward-moving ripples. Quadrant two, where it is negative, corresponds to upward-moving ripples.

=
∑

k

∑
l

ak,l exp{ j · ψk,l }

· δ(w − wk, Ä−Äl ), (12)

which produces the complex functioñS referred
to as the ripple spectrumof the stimulus. Here,
δ(·, ·)= 1 when its arguments are zero, and otherwise
equals zero. Thus,̃S is only nonzero at the points
S̃(wk, Äl )=ak,l exp{ j ·ψk,l }, with ak,l andψk,l corre-
sponding to the magnitude and phase of the ripple spec-
trum, respectively, at these points. The(w,Ä) axes on
which they are displayed are called theripple domain.
These two complementary views of dynamic spectra,
in the spectro temporal and ripple domains, are (exem-
plified in Fig. 4A).

A useful descriptor ofS is its total power P:

P
1= 1

TX

∫ T

0

∫ X

0
S2(t, x) dx dt

=
∑

k

∑
l

(ak,l )
2. (13)

Intuitively, dynamic spectra with higher total power (or
just power, for brevity) spend more time further away
from the mean level. As can be verified using (10) in
the definition,P corresponds to the sum of the squares
of the ripple-component amplitudes.

3.3. The Ripple Transfer Function

It is well known that a linear time-invariant single-input
single-output system is fully characterized in the time-
domain by its impulse response (the first-order Volterra
kernel; see (4)) and equivalently in the frequency do-
main by its transfer function (its frequency response).
Similarly, the STRF, which in (1) basically acts as an
impulse response (Depireux et al., 1998b), can also be
described, in the ripple domain, by aripple transfer
function, H :

H(w,Ä)
1= 1

TX

∫ T

0

∫ X

0
STRF(τ, x)

· exp{− j 2π(wτ −Äx)} dx dτ

=
∑

k

∑
l

Hk,l · δ(w−wk, Ä−Äl ), (14)

whereH has been defined (for reasons to follow) as
the ripple spectrum of the STRF with the spectral axis
flipped. Following (12), the magnitude and phase of
H(wk, Äl )= Hk,l then yields the unique set of ripple
component amplitudesbk,−l and phasesθk,−l , that de-
scribe the flipped STRF—that is,

Hk,l
1= bk,−l exp{ j · θk,−l }, (15)
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Figure 4. A: The dynamic spectrumS (left) of a speech segment (“Come home right away.”) produced by a cochlea-like filter bank, and the
magnitude squared of its ripple spectrum (right), obtained from the double Fourier transform ofS, are shown. Note (arrows) the prominent 4 Hz
peaks in the ripple spectrum, corresponding to the speech tempo over this one-second interval. A majority of the power of the ripple spectrum
(about 65% ) is restricted to low ripple densities (<1 c/o) and low modulation rates (<8 Hz) indicated by the dashed box.B: An STRF estimate
obtained (using the sum-of-ripples method) from ferret AI, and the amplitude squared of the corresponding ripple transfer function are shown.
See the text for a description.

where, akin to (10),

STRF(τ, x)

=
∑

k

∑
l

bk,l exp{ j [2π(wkτ +Äl x)+ θk,l ]}

=
∑

k

∑
l

Hk,−l exp{ j 2π(wkτ +Äl x)}. (16)

An example of an STRF measured from ferret AI
and the squared magnitude of the corresponding ripple
transfer function are illustrated in Fig. 4B.

As defined,H can also be called theripple response
because it details the system’s responses to individual

moving ripples. This is shown by inserting (10) and
(16) into the STRF functional (1), to obtain a general
form for the response:

r (t) =
∑

k

∑
l

Hk,l ak,l exp{ j (2πwkt + ψk,l )}. (17)

Thus, the response toany given stimulus consists of
the sum of the responses to each of the individual
stimulus ripple components (wk, Äl ). The response
to each component is sinusoidal, with a frequencywk,
and an amplitude scaled and phase shifted, relative to
the stimulus, by the magnitude and phase of H(wk, Äl ).
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Besides describing the structure of the STRF,H pro-
vides a useful complementary view, mediated by the
properties of the Fourier transform, of the functional-
ity of the STRF. Common neuronal descriptors such
as excitatory and inhibitory tuning, spectral and mod-
ulation tuning bandwidth, latency, and memory can all
be derived from the ripple transfer function (Kowalski
et al., 1996a; Depireux et al., 1998b). Moreover, seem-
ingly complex features of the STRF can translate to
simple functionality as described byH . For exam-
ple, the transfer function of Fig. 4B is band-pass in
w because this neuron was responsive only to a cer-
tain range of temporal modulation frequencies. This
is also reflected (and perhaps determined) by the tem-
poral pattern of excitatory and suppressive influences
on the neuron, evidenced by the STRF. Furthermore,
the slanted orientation of the STRF indicates that this
neuron responded most strongly to rising frequencies.
This is corroborated by the magnitude ofH , which
is strongest in the second and fourth quadrants, corre-
sponding to upward-moving ripples.

3.4. Dynamic Ripple Analysis

Because the STRF can easily be determined fromH
by (16), andH details a neuron’s responses to moving
ripples, the STRF can be estimated by presenting vari-
ous moving ripple stimuli, one at a time, and measuring
the amplitude and phase of the responses (at the appro-
priate frequencieswk). This procedure is very much
akin to conventional sinusoidal linear-system analysis.
If the right combination of sinusoids are presented to
the system, the important features of the ripple transfer
function, and hence the STRF, can be characterized.
Subsequently, responses to arbitrary dynamic spectra
can be predicted via (17). This is the crux of the dy-
namic ripple-analysis method (Kowalski et al., 1996a,
1996b; Depireux et al., 1998b).

An important advantage of this method is that, for
every stimulus-response pair, all of the stimulus power
is concentrated at a single ripple (wk, Äl ) and all of
the (linear) response power is concentrated at a sin-
gle frequencywk. Hence, each point on the ripple-
transfer functionHk,l is measured with maximal signal
power. However, the chief disadvantage of this method
is the time required to present all of the stimuli neces-
sary to build a complete characterization of the trans-
fer function. Typically, only two perpendicular cross-
sections are measured within each quadrant ofH—one
in whichÄ is varied whilew is fixed andvice versa.

The remainder of the quadrant is then estimated by
the cross-product of these two sections. In doing so, it
is presumed that the actual transfer function isquad-
rant separable(Kowalski et al., 1996a; Depireux et al.,
1998b).

3.5. Spectrotemporal Reverse Correlation

Preliminary studies have suggested that the quadrant
separability assumption is reasonable for neurons in
ferret AI (Kowalski et al., 1996a; Depireux et al.,
1998a, 1998b). However, it is possible that spectrotem-
poral processing in other auditory centers is not well
described by quadrant separable STRFs. A more gen-
eral approach to STRF estimation, which can be used
to avoid sucha priori assumptions about the structure
of the STRF, is offered by the spectrotemporal reverse
correlation method. The method was previously cast
within a stochastic framework. Now, we have the tools
to reevaluate it in the ripple domain.

First, it is noted that the measured response,R, may
contain, in addition to the linear portionr produced by
the STRF functional, another portionedue to nonlinear
and random aspects of the system transformation which
are not described by the STRF:

R(t) = r (t)+ e(t). (18)

In the following, we will refer to the ideal linear case as
the case in which the response is completely specified
by the STRF:e(t)= 0.

The spectrotemporal reverse-correlation functionC,
is obtained by cross-correlating the dynamic spectrum
of the stimulus with the measured response:

C(τ, x)
1= 1

T

∫ T

0
S(t − τ, x) · R(t) dt. (19)

SinceC has often been used, without modification,
as the STRF estimate, it is of interest to explore the
conditions by which it resembles the STRF.

Substituting (18) into (19), another useful expression
for C is obtained:

C(τ, x) = c(τ, x)+ ε(τ, x), (20)

where the following definitions have been made:

c(τ, x)
1= 1

T

∫ T

0
S(t − τ, x) · r (t) dt, (21)

ε(τ, x)
1= 1

T

∫ T

0
S(t − τ, x) · e(t) dt. (22)
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Ideally, then,ε(τ, x)= 0. The remaining, linear part
of the cross-correlation functionc is derived using (10),
(17), and (21):

c(τ, x)= 1

T

∑
k

∑
l

∑
k′

∑
l ′

ak,l ak′,l ′Hk′,l ′

× exp{ j 2π(−wkτ + ωl x)}
· exp{ j (ψk,l + ψk′,l ′)}

×
∫ T

0
exp{ j 2π(wk + wk′)t} dt

=
∑

k

∑
l

∑
l ′

ak,l a−k,l ′H−k,l ′

× exp{ j [2π(w−kτ +Äl x)+ψk,l +ψ−k,l ′ ]}.
(23)

This function contains the sum of the cross-
correlations between each stimulus ripple component
(wk, Äl ) and each response component (wk′ ). Those
terms for whichk′ 6=−k (that is,wk′ 6=−wk) integrate
to zero over the stimulus duration (they are temporally
orthogonal). The remaining terms (for whichk′ =−k)
are naturally divided into two groups: the self-terms
cs, for whichl ′ =−l , and the cross-termsc×, for which
l ′ 6=−l :

c(τ, x) = cs(τ, x)+ c×(τ, x). (24)

Each self-term results from the cross-correlation be-
tween a particular stimulus ripple component and the
corresponding response component evoked by it via
the STRF functional. In comparing the self-terms with
the form of the STRF (16), it is immediately evident
that they consist of STRF components weighted by the
squared amplitudes of the stimulus components—that
is,

cs(τ, x) =
∑

k

∑
l

(ak,l )
2H−k,−l

× exp{ j 2π(w−kτ +Äl x)}, (25)

except that that the recovered STRF components ac-
tually correspond to the stimulus components with the
opposite modulation direction (thus the−k). This is es-
sentially because, as defined, the time axis of the stim-
ulus indicates progression whereas the time axis of the
STRF indicates precedence. Nevertheless, it should be
apparent that if theak,l are relatively constant wherever
Hk,l is of significant magnitude, the self-terms should
resemble the STRF, aside from an overall scale factor.

However, the cross-terms bear no special resem-
blance to the STRF; although they do depend on the
form of the STRF, the cross-terms also depend on the
phases of the stimulus components and are smeared
over allÄ:

c×(τ, x)=
∑

k

∑
l

∑
l ′ 6=−l

ak,−l ak,l ′Hk,l ′

× exp{ j [2π(wkτ +Äl x)−ψk,−l +ψk,l ′ ]}.
(26)

Cross-terms arise when there are multiple stimu-
lus components with the same modulation frequency
|w|. As illustrated in Fig. 5, although they have differ-
ent ripple densities, such components evoke identical,
overlapping response frequencies, which sum to a sin-
gle observed response component. This will, in turn,
be correlated with every stimulus component having
that same modulation frequency. The portion of the
response that is not due to a particular stimulus com-
ponent but is temporally correlated with it constitutes
a cross-term.

Figure 5. The responsesr1 andr2 of this STRF-systemH , to the
ripple stimuli S1 and S2 with identical modulation rates|w|, are
sinusoids with identical frequencies. Thus, the responser3 to the
sum of these stimuliS3 is also a sinusoid of the same frequency.
Consequently, one cannot unambiguously derive the form of the
ripple transfer functionH at the points corresponding toS1 andS2

from the response toS3.
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Unfortunately, although the self-terms and cross-
terms have been conceptually separated, they are not
separate because they have overlapping ripple spectra.
Moreover, the cross-terms are in general of the same
order of magnitude as the self-terms. Thus, for arbi-
trary stimulation, there is no guarantee thatC will
closely resemble the STRF, even if the system is com-
pletely linear andS is spectrotemporally rich. This
is especially problematic for brief stimuli, whenT is
comparable to the memory of the system. In this case,
the cross-terms, which are relatively unstructured and
diffuse, will be entirely manifest over the same range
of latencies that the STRF components are expected
to be.

4. The Sum-of-Ripples Approach

Above, it was shown how, by use of the Fourier series,
the dynamic spectrumS of any given stimulus can be
described as a sum of ripples. It was found that, in
general, nonidealities of the dynamic spectrum, mani-
fest by significant cross-termsc× and irregular ripple-
component amplitudes, will cause the spectrotemporal
cross-correlation function,

C(τ, x) = cs(τ, x)+ c×(τ, x)+ ε(τ, x), (27)

to be significantly different from the STRF, even in the
ideal linear case—that is,ε(τ, x)= 0. These nonide-
alities might be corrected fora posteriori(Eggermont
et al., 1983b; Theunissen et al., 1998), but the correc-
tion procedure can be difficult and time consuming,
in general requiring the computation and delicate
manipulation of large multidimensional correlation
matrices. The considerable error associated with these
procedures may in turn propagate to the STRF estimate
(Eggermont et al., 1983b).

An alternative and considerably simpler approach
is to create stimuli for which the correction proce-
dure is trivialized. Such is the credo of the sum-of-
ripples approach, where deterministic dynamic spec-
tra are conscientiously designed using a finite sum of
ripples. Considering the results so far, the design pro-
cess is primarily focused on three issues: equalization
of ripple-component amplitudes, minimization of the
cross-term power, and maximization of the self-term
power. Given experimental constraints, this leads to
the design of short-duration stimuli whose structure is
enriched with those spectral and temporal qualities ger-
mane to the auditory locus under study and that consist
only of ripples that are mutually temporally orthogonal.

4.1. Stimulus Synthesis

The general expression used for the stimulus synthesis,

S(t, x) =
N∑

i=1

2aki ,l i cos
{
2π
(
wki t +Äl i x

)+ ψki ,l i

}
,

(28)

details the design of the dynamic spectrum with the
sum ofN distinctmoving ripples. As before, the ripple
densities and velocities available for selection depend
on the duration,T , and bandwidth,X, of the stimuli,
through the relations given in (11). To preserve the no-
tation of (10), the particular ripples chosen are param-
eterized by the list of indicesk= [k1, k2, . . . , kN ] ∈
(−∞,∞) and l= [l1, l2, . . . , l N ] ∈ [0,∞), corres-
ponding to the points (wki , Äl i ) located in the upper
two quadrants of the ripple domain. In exception are the
points along the left side of thew axis (w<0, Ä= 0),
which, being already specified by the complex conju-
gates of the points on the right, must be excluded from
this list. Consequently, in the stimulus analysis ex-
pression (10), there will be 2N terms for whichak,l is
nonzero since, as defined,

ak,l =
N∑

i=1

aki ,l i [δ(k− ki , l − l i )+ δ(k+ ki , l + l i )].

(29)

These correspond directly to theN points above plus an
additionalN points at the complex-conjugate locations
(−ki ,−l i ) in the lower two quadrants (which includes
the left side of thew axis). In practice,S also has a
mean sound levela0,0 which is set to a reasonable,
intermediate value.

To facilitate the recovery of the STRF from the
self-terms, the stimuli are constructed with constant-
amplitude ripples—that is,aki ,l i =a for all 1≤ i ≤ N.
Consequently, the deconvolution procedure generally
required to recover the STRF fromcs reduces to a di-
vision by a known scalar. Using (29), (25) reduces
to

cs(τ, x) = a2 ·
N∑

i=1

[
H−ki ,−l i exp

{
j 2π

(
w−ki τ +Äl i x

)}
+ Hki ,l i exp

{
j 2π

(
wki τ +Ä−l i x

)}]
1= a2 · STRF(τ, x;−k, l), (30)
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whereSTRF(τ, x;−k, l) denotes a sum over the set
of STRF components parameterized by the indices−k
andl, i.e., it is the STRF filtered through the 2N points
in the ripple domain at which the time-reversed stimu-
lus has support.

It is desired for the magnitude of the self-terms, and
thusa, to be maximized, so that they will have a robust
presence inC. For a givenN, this is equivalent to max-
imizing the stimulus powerP= 2Na2. However, there
are constraints onP due to the limited dynamic range
of S; the stimulus’ sound level cannot be modulated be-
yond certain extreme values (for example, below zero
and above damaging levels). Therefore, the phases of
the stimulus components are typically randomized, or
otherwise chosen to reduce the peakiness of the dy-
namic spectrum. Intuitively, this allows one to pack
more power over a limited dynamic range (Boyd et al.,
1983).

The range of ripples used to build the stimulus (that
is,k andl) should be relevant to the auditory locus being
studied: they should lie within the expected nonzero
extent of the ripple-transfer function. For example, in
mammalian AI it has been found that a great majority
of neurons respond only to temporal modulations from
about 4 to 40 Hz and to spectral modulations within 0
to 2 c/o (Langner, 1992; Schreiner and Calhoun, 1995;
Shamma et al., 1995; Kowalski et al., 1996a; Depireux
et al., 1998b). A stimulus tailored for AI, which con-
tains 200 constant-amplitude random-phase ripples ar-
ranged within these bounds, is shown in Fig. 6A. In
contrast, a stimulus constructed for use in the inferior
colliculus (IC) is shown in Fig. 6B. The main differ-
ence between the two stimuli is the inclusion of much
higher modulation rates in the IC stimulus because of
the sensitivity to higher rates known to exist in this
locus (Langner, 1992).

While it is obviously paramount for the stimulus to
containrelevant spectral and temporal modulations, the
main reason torestrict the ripple spectrum as such is
that the inclusion of additional ripples doesn’t improve
the reconstruction of the STRF; it serves only to de-
creasea and thus the self-term power. This has been
sketched in Fig. 7. In the limit, as the number of ripples
N extends to infinity, the stimulus becomes spectro-
temporally white. However, sinceP is limited, the rip-
ple amplitudes must all decrease by

√
N in the process.

4.2. Cross-Term Removal by Phase Averaging

Dynamic spectra such as that shown in Fig. 6 are effica-
cious in that they contain the full range of ripple compo-

nents needed to accurately reconstruct the STRF. How-
ever, in general such stimuli present a problem in that
they contain multiple components with common ripple
velocities, resulting in the generation of cross-terms
in C. One way to remove the cross-terms, detailed in
this section, is by phase averaging. This method has
been used for STRF estimation in ferret AI (Shamma
et al., 1998). Although it has since been supplanted by
the preferred TORC method, detailed in the next sec-
tion, the phase-averaging method provides a valuable
view of how accurate STRF estimation is, in principle,
possible with stochastic and ergodic stimulation, for
whom time averaging is equivalent to phase averaging
(Wiener, 1958; Victor and Knight, 1979).

The phase-averaging method takes advantage of
the fact that the phases of the cross-terms (26) de-
pend on the phases of the stimulus components
Ψ= [ψk1,l1, ψk2,l2, . . . , ψkN ,l N ], and so their expected
(average) value over all sets of stimulus phases is
zero—that is,

Eψ {c×(τ, x;Ψ)} = 1

(2π)N

∫ 2π

0
c×(τ, x;Ψ) dΨ = 0

(31)

—as long as the phasesψki ,l i each vary uniformly over
an interval of 2π radians.

Using (27), (30), and (31), the expected value ofC
is then

Eψ {C(τ, x)}
= cs(τ, x)+ Eψ {ε(τ, x)}
= a2 ·STRF(τ, x;−k, l)+ Eψ {ε(τ, x)}, (32)

since the self-terms do not depend onΨ. In the ideal
linear case, then, the expected value ofC is identical to
the self-terms, which bear a scalar relationship to the
STRF components. In practice, however, this expected
value cannot be met exactly but must be approximated
either as an average over a sufficiently long time or over
a sufficiently large number of random-phase stimuli.
Below, a multiple-stimulus phase-averaging procedure
is detailed.

A total of M stimuli are used for the phase average.
The i th stimulus,Si (t, x;Ψi ), is constructed with the
same set of constant-amplitude ripples but with a new,
random set of phasesΨi drawn from a uniform distribu-
tion. Equation (32) is then approximated by averaging
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Figure 6. Shown here are examples of sum-of-ripples stimuli used for STRF estimation (phase-averaging method; see Section 4) in ferret
AI (A) and IC (B). Each stimulus is composed of a range of constant-amplitude, random-phase ripples presumed, from prior experiments, to
be relevant to the corresponding auditory locus. Above, the spectrotemporal envelopes (Depireux et al., 1998b) are shown. Below, the ripple
content of each is indicated.

Figure 7. A and B: The ripple spectra of two hypothetical stimuli are shown. The vertical axis indicates the amplitude squared of the ripple
components at each point (w,Ä). The total powerP= 2Na2 thus corresponds to the total volume of the box. The shaded volume indicates
that portion seen by a neuron that is responsive only to a central region ofw’s andÄ’s. Although the two stimuli have identical total power,
stimulus (B), with power spread outside the relevant range of the ripple domain (such as white noise or tones), will on average evoke much
weaker responses.



Spectrotemporal Reverse Correlation for the Auditory System 101

Figure 8. A: Simulation results of the phase-averaging method using ideal linear data. Shown are the estimates after and 5 and 25 stimuli,
as noted. B: Experimental results from ferret AI. For all stimuli,N= 96, X= 5 oct., T = 250 ms,|w| ≤24 Hz and|Ä| ≤1.6 c/o. For
the experimental results, delivered acoustic waveforms were constructed from their predetermined spectrotemporal envelopes, as detailed in
(Depireux et al., 1998b). PSTH’s (with 1 ms bins) from single neurons, constructed from 100 periodsT of each stimulus, were used as responses.
For additional results, see also Fig. 10B.

C over M stimulus-response pairs, denoted by〈C〉M :

〈C(τ, x)〉M = 1

M

M∑
i=1

Ci (τ, x;Ψi ), (33)

whereCi is the cross-correlation of thei th stimulus-
response pair. Finally, the phase-average STRF esti-
mate is obtained by dividing (33) bya2= P/2N:

STRFest(τ, x)= 1

a2
〈C(τ, x)〉M

= STRF(τ, x;−k, l)+ 2N

P
×{〈c×(τ, x)〉M + 〈ε(τ, x)〉M}. (34)

The random-phase-averaged cross terms〈c×(τ, x)〉M
scale in magnitude by approximately 1/

√
M . Thus, the

error power,PE,

PE
1= 1

TX

∫ T

0

∫ X

0
{STRFest(τ, x)

−STRF(τ, x;−k, l)}2 dx dt, (35)

will be reduced roughly by 1/M . Simulation results of
this method are shown in Fig. 8A, and results obtained
from ferret AI can be also seen in Figs. 8B and 10B.

4.3. Temporally Orthogonal Ripple Combinations

Because the STRF functional dictates a two-
dimensional to one-dimensional input-output domain
transformation, separate, (orthogonal) stimulus com-
ponents can evoke overlapping response components
(as in Fig. 5). This produces an initial ambiguity in the
STRF estimate, manifest by the cross-terms in (23).
Above, it was shown that these cross-terms can be re-
moved by phase-averaging, but, like the white-noise
approach, an infinite amount of time is required to
achieve error-free STRF estimation. Thus, with the
phase-average method, an acceptable error level may
not always be practically achievable, even if the system
were linear and noiseless.

To reap the full benefits that can be attributed to the
sum-of-ripples approach, the stimulus components can
be chosen more carefully so that they all evoke sepa-
rate response frequencies. This is a motivation that is
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similar to that used in the development of the time-
domain sum-of-sinusoids method of measuring non-
linear system kernels (Victor and Knight, 1979; Victor
and Shapley, 1980). In the current application, this is
accomplished by only superimposing moving ripples
whose velocities all differ in absolute value—that is,

|wk| 6= |wk′ | (36)

—for all k 6= k′. Through (11) this is equivalent to the
restriction|ku| 6= |kv| for all u 6= v for the elements of
k used in the stimulus synthesis (28).

Such ripples are calledtemporally orthogonalsince
their temporal correlation is zero—that is,

∫ T

0
{[ak,l cos(2πwkt + 2πÄl x + ψk,l )]

· [ak′,l ′ cos(2πwk′ t + 2πÄl ′x + ψk′,l ′)]} dt = 0

(37)

for any |wk| 6= |wk′ |. A stimulus composed of two or
more such ripples is referred to as atemporally ortho-
gonal ripple combination(TORC).

Since there is not any component overlap in the
STRF-based response to a TORC, each linear response

Figure 9. A: TORC method I. The indicated ripple content (black and gray points) refers to that of the entire stimulus ensemble. The dynamic
spectrum of several individual stimuli (i to vii), are shown. The ripple content of each is indicated by the black rows of points similarly labeled.
B: TORC method II. The stimulus shown has roughly the same ripple content and duration as that of the entire ensemble in A. Because of
its longer duration, the 0.25 Hz spacing allows a more clever positioning of ripple components. Note that no two components share the same
modulation rate|w|.

component is temporally orthogonal to every stimulus
componentexceptfor the one responsible for evoking
it. Therefore, the cross-terms are identically zero, and
C reduces directly to

C(τ, x) = a2 · STRF(τ, x;−k, l)+ ε(τ, x), (38)

without the need for any averaging. As such, the STRF
components at (−k, l) are recovered, by simply divid-
ing C by a2, with an accuracy that immediately sur-
passes the capabilities of the phase-averaging method.

Along with the temporal orthogonality restric-
tion comes some additional challenges for dynamic-
spectral design because there is less flexibility for the
positioning of stimulus components within the signifi-
cant extent ofH . Below, two stimulus configurations,
which have proved to be useful in experiments and
simulations, are detailed.

With TORC method I, a set ofN ripples, deemed
adequate to reconstruct the STRF, is equally subdi-
vided into a group ofM TORCs. One such stimulus
set is shown in Fig. 9A. In this particular design, the
individual stimuli span different rows in the ripple do-
main; each TORC was built using a single ripple den-
sity and a range of ripple velocities. Consequently, each
stimulus-response pair is used to measure a single row
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of H . This design is interesting because it can be used
to directly investigate how the dynamical processing of
the system changes at different levels of spectral-peak
density.

If some stimulus power can be sacrificed, one can al-
ternatively use TORC method II: a single TORC with a
longer duration. This allows for finer resolution in the
w direction (through (11)), and thus greater flexibil-
ity for the positioning of ripple components. This ap-
proach is illustrated by the stimulus shown in Fig. 9B,
which covers a portion of the ripple domain relevant
to AI while fulfilling the temporal orthogonality con-
dition. The stimulus is sixteen times as long as the
stimuli in 9A. However, it still spans only four sec-
onds, corresponding to the 0.25 Hz spacing between
ripple components.

These two TORC design strategies can be merged
into a single expression for the STRF estimate:

STRFest(τ, x)

= 2(N/M)

P

M∑
i=1

Ci (τ, x)

= STRF(τ, x;−k, l)+ 2N

P
〈ε(τ, x)〉M . (39)

Here, theCi are added, not averaged, and then scaled
by 1/a2. Note that the indicesk andl now refer to the
ripple content of theentire setof M stimuli, and each
stimulus (indexed byi ) contains an equal-sized portion
N/M of a total ofN ripples.

Finally, PE in this case is

PE =
(

2N

P

)2 1

TX

∫ T

0

∫ X

0
{〈ε(τ, x)〉M}2 dx dt. (40)

If e(t)= 0, PE = 0. Thus, perfect recovery of the STRF
is now achievable in the ideal case.

In Fig. 10, STRF estimates produced by the TORC
methods are illustrated and compared to the phase-
averaging method. Both for ideal, simulated data (A)
and for actual data from ferret AI (B), the TORC esti-
mates are apparently superior in all cases (see also
Fig. 8).

4.4. Nonidealities

It has been shown that, if a neuron’s response is com-
pletely determined by the STRF functional, the TORC
method achieves perfect STRF estimation by avoiding

the generation of cross-terms inC. However, as the
experimental results suggest (Fig. 10B), in reality the
remaining error powerPE (40), is different from zero.
The source of this estimation error ise(18), the portion
of the response not accounted for by the STRF. Thus,
like e, it may include a random element due to noise and
a deterministic element due to system nonlinearities.

For spiking systems, the PSTH is likely to be a pri-
mary source of estimation error. As evident in Fig. 11,
this error is manifest over a broad range of frequencies.
With general stimulation, it will, in turn, be erroneously
and randomly correlated with a broad range of stimulus
components, thus creating an unstructured variability
in the STRF estimate. Fortunately, the error, having
resulted in (22) from a cross-correlation ofe with S,
is restricted to the same portion of the ripple domain
as the stimulus ensemble. Thus, sum-of-ripples esti-
mates can be considered filtered versions of estimates
obtained with general stimulation, such that only those
ripple components expected to be strongly manifest in
the STRF appear in the estimate. Consequently, much
of the noise, especially at high-frequencies, that has
been typical of published STRF estimates and has ne-
cessitated the use of smoothing filters and thresholds,
can be avoided.

Furthermore, as seen in Fig. 11, the quality of the
PSTH approximation generally improves as more
spikes are used in the histogram. To benefit this cause,
the sum-of-ripples stimuli are trivially made periodic
without compromising their structural idealities. Since
the temporal frequencieswk used to design the stim-
ulus are commensurate with periodT , periodicity is
achieved simply by extending the total stimulus du-
ration include as many repetitions of the stimulus as
necessary.

Equation (40) predicts thatPE will decrease quadrat-
ically with increases in the stimulus per-component
power. While this may be true for the random por-
tion of the error, the deterministic (nonlinear) portion
of the error term, being systematically related to the
stimulus, cannot in general be reduced by increasing
the stimulus strength. If anything, its its contribution
will become more apparent, the degree to which de-
pends on the degree of the nonlinearity.

As for the structure of this systematic error, one can
consider the difference between the first-order Volterra
v1 and Wienerw1 kernels for a third-order, single-input
system (Eggermont, 1993):

w1(τ ) = v1(τ )+ 3P
∫
v3(τ1, τ2, τ2) dτ2. (41)
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Figure 10. A: Noiseless, linear simulation of TORC method I (M = 15) and TORC method II (M = 1). B: Comparison of experimental results
from ferret AI, produced with TORC method I (M = 15), and by phase-averaging with stimuli akin to that used for Fig. 8 (M = 25). For all
stimuli, T = 250 ms, exceptT = 4 sec for the TORC II stimulus.

Similarly, there is expected to be a systematic differ-
ence between the estimated and actual STRFs if the
system contains higher-order nonlinearities of the same
parity as the STRF.

This phenomenon can also be understood from
a sum-of-sinusoids standpoint. For example, the re-
sponse of a cubic nonlinearity to a sum of sinusoids
contains frequencies that result from additive or sub-
tractive combinations of any three input frequencies
(wk ± wl ± wm), which always includes frequencies
that overlap with the linear response (Victor and
Shapley, 1980; Victor, 1991). Combination frequen-
cies due to quadratic nonlinearities (wk ± wl ) may
also overlap with the linear response; however, un-
like the cubic contribution, they can be removed rela-

tively easily, such as by using the inverse-repeat method
(Swerup, 1978) (with respect to the dynamic spectrum).
Alternatively, it is possible to choose the input frequen-
cies so that there is no overlap between the quadratic
and linear portions of the response (Victor and
Shapley, 1980). Of course, if nonlinearities are evi-
dent, they should ultimately be incorporated into the
model. This, however, is beyond the scope of this
article.

5. Discussion and Summary

Spectrotemporal reverse correlation was developed as a
means to simultaneously measure the interdependence
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Figure 11. The response error due to the PSTH approximation improves with the number of spikes. Spike histograms (right), created with a
5 ms bin width, and their corresponding power spectra were created with 20 (A), 40 (B), and 100 (C) periods of a 250 ms TORC (method I), and
contain 65, 191, and 472 spikes, respectively. The superimposed dashed curve corresponds to the smooth response predicted by this neuron’s
STRF.

of several important physiological properties of audi-
tory neurons—including frequency tuning, lateral inhi-
bition, latency, and modulation rate tuning—related to
both spectral and temporal aspects of stimuli (Aertsen
and Johannesma, 1980; Aertsen et al., 1980a, 1980b).
The spectrotemporal receptive field (STRF), thence
born of empiricism, promised descriptive capabilities
transcending those of separate spectral and temporal
measures (Aertsen et al., 1980a; Hermes et al., 1981;
Eggermont et al., 1981). Subsequently, the theory of
the STRF as a functional property of neurons, charac-
terizing a comprehensive spectrotemporal sensitivity,
independent of the means used to measure it, was fur-
ther developed, and relations were drawn between the
STRF and the Volterra and Wiener functional expan-
sions (Aertsen and Johannesma, 1981b; Hermes et al.,
1981; Eggermont et al., 1983c).

The Volterra and Wiener series, in all of their math-
ematical elegance, are not biologically motivated con-
structs. Therefore, the close correspondence between
the second-order Volterra functional and the STRF
functional represents a unique opportunity to join em-
piricism with theoretical rigor in the study of the audi-
tory system. In doing so, the Volterra parallel suggests
that the input to central auditory neurons may be rep-
resented by members of a specific class of (quadratic)
joint time-frequency representations of the stimulus.
If the representation actually employed is a more com-
plicated functional of the stimulus waveform (such as

a that produced by a nonlinear cochlear model
(Carney and Friedman, 1998)), it may be difficult to
strictly compare the corresponding STRF to any one
term in the Volterra or Wiener expansions (with respect
to the waveform). Of course, the resulting model may
be more concise; intuition should not be abandoned
just to fulfill the requirements of the Volterra series.
Intuition brought the STRF into use; the Volterra and
Wiener series have only been useful insofar as they have
aided in evaluating the completeness of the STRF, and
the challenges inherent with its measurement.

The evaluation of the white-noise approach to STRF
estimation has led to the conclusion that stationary
Gaussian noise stimulation is not well suited for most
auditory areas, and particularly those most central. It
is apparent that improvements should be made in at
least three aspects. First, the stationarity of the stimu-
lus is often cited as being an undesirable; it is thought
that stimulation should be more dynamic and natu-
ral (Smolders et al., 1979; Eggermont et al., 1983c;
Yeshurun et al., 1985; Nelken et al., 1997; Nelken
et al., 1999). A second (and related) improvement is
that, for efficient laboratory use, stimulation should be
brief and restricted to what elicits responses that are
reliably measured. Finally, while fulfilling these cri-
teria, it is obviously desired for the structure of the
stimulus ensemble to be such that the simple act of
spectrotemporal reverse correlation produces an accu-
rate reconstruction of the STRF.
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The realization of these improvements depends
strongly on the adopted theoretical framework. For ex-
ample, the stochastic and multiple-input framework in
which STRF estimation is typically cast suggests that
power fluctuations across discrete frequency bands—
that is, channels of the dynamic spectrum should be un-
correlated, to prevent cross-channel mixing in the com-
putation of the stimulus-response cross-correlationC
(Eggermont et al., 1983b). While enforcing this condi-
tion, improvements inevitably focus solely on the
temporal structure within the individual channels
(Eggermont et al., 1983b; deCharms et al., 1998; Kvale
et al., 1998).

We have adopted a new framework, under which
further improvements are realized by manipulating
both spectral and temporal aspects of stimuli simul-
taneously. Our analysis, inspired by the linearity of
the STRF functional, was based on a Fourier decom-
position of the spectrotemporal domain into two-
dimensional sinusoidal components, moving ripples,
each of which embodies a unique intersection of
spectral-peak density, modulation rate, and modula-
tion direction. This put the analysis of the system on
equal footing with that of single-input linear systems;
the stimulus has a ripple spectrum, and the system has
a ripple-transfer function that describes its linear re-
sponse to moving ripples. This led directly to an ana-
lytical expression, in terms of these quantities, forC
which holds foranygiven stimulus. From within this
framework, we have addressed each of the proposed
improvements.

The labels dynamic and natural are related not only
to the total power of the dynamic spectrum but also to
the way that it is distributed among its ripple compo-
nents. White noise, for example, has power spread thin
overall ripple components. Presumably, it gives rise to
a stationary percept because the power relegated to the
narrow range of spectral-peak densities and modulation
rates at which human observers can perceive changes
(Chi et al., 1999) is relatively weak. The same can be
said for auditory neurons; at the level of AI, the range of
densities and rates to which neurons are responsive is
quite narrow. Interestingly, it also over this range that
natural sounds seem to hold their energy (Attias and
Schreiner, 1997; Chi et al., 1999). Thus, in realizing
dynamic stimulation whose structure approaches that
of natural sounds, the power of the dynamic spec-
trum should be focused over this relevant range
of ripple components. This is not possible while
keeping the channels uncorrelated; the ripple spec-

trum of such a stimulus is dispersed over all ripple
densities.

Besides the prospect of augmenting the applicabi-
lity of the STRF estimates (for example, for predicting
responses), there are other practical reasons for restrict-
ing the ripple spectrum of stimuli as such. By dedicat-
ing the stimulus power wholly to those components
that are relevant to a given locus, and thus maximizing
the strength of the stimulus “seen” by that system, the
strength of the STRF-mediated response in that locus is
maximized. This is especially helpful in biological sys-
tems identification because there is a significant amount
of measurement noise that has to be overcome. Further
gains in signal-to-noise ratio are made possible by the
brief and periodic nature of the sum-of-ripples stimuli,
which brings a computational advantage as well; the
stimulus-response cross-correlation need only be per-
formed between the period-averaged response and one
period of the stimulus, whose structure is known ahead
of time. In total, all of these improvements bring to the
laboratory the greater possibility of reliably measuring
meaningful STRFs in a short period of time, in loci
where previous attempts have failed.

Paramount to such concerns, in order forC to be an
undistorted representation of the STRF, it was shown,
after separatingC into self-terms and cross-terms, that
two basic criteria must be satisfied by the delivered
stimulus ensemble. First, it is necessary for the ripple
spectrum of the ensemble to be flat over the significant
extent of the ripple transfer function, so that the self-
terms reduce to STRF components, scaled by a known
factor. Subsequently, the cross-terms were identified
as a primary source of estimation error, especially with
brief stimuli, thus warranting their removal.

Two strategies were outlined for removal of the
cross-terms. First, the phase-averaging method, for
which the stimulus’s ripple spectrum has randomly
varying phase, offers insight into how STRF estimation
can be accomplished with traditional, stochastic (and
ergodic) stimulation. However, since there is a limit to
the amount of averaging that can be performed in an
actual experiment, there is a practical lower limit to the
estimation error caused by the cross-terms. Due to the
relatively large initial magnitudes of the cross-terms
that, interestingly, partially depend on the structure of
the STRF, this limit may not be acceptable in all cases.

A preferable strategy, through which the cross-
terms were completely avoided, involves the use
of deterministic stimuli whose ripple components
all differ in modulation rate—TORCs—and thus all
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evoke different response frequencies. With the TORC
method, no stimulus averaging is needed, and, there-
fore, it is possible to achieve error-free STRF estimates
with stimuli having a duration comparable to the mem-
ory of the system. Also, due to this brevity, and the pre-
determined structure of the stimuli, it has been possible,
once recording the response, to compute the STRF
estimate in a few seconds, on the fly. This is in stark
contrast to other, stochastic estimation schemes.

That perfect STRF estimation is possible with TORC
stimulation might be surprising, since different chan-
nels of a TORC can be strongly correlated. Fortunately,
the TORC mechanism can be illuminated in the same
light as ideal-white noise, from within a multiple-input
framework. By inserting the STRF functional (1) di-
rectly into (19) and rearranging terms, one obtains for
the spectrotemporal cross-correlation function:

C(τ, x)=
∫ ∫

STRF(τ ′, x′)

·8(τ − τ ′, x, x′) dτ ′ dx′ + ε(τ, x). (42)

Here,

8(τ − τ ′, x′, x)
1=
∫

S(t − τ ′, x′)S(t − τ, x) dt

(43)

is a function that, in the discrete channel interpretation,
describes the cross-correlation between two channels
x′ and x of the stimulus’s dynamic spectrum. Thus,
a single channelx of C is produced by the sum of
the convolutions ofeverychannelx′ of the STRF with
the cross-correlations between the channelsx′ and x
of the stimulus. This rather complicated expression
illustrates the difficulty in disentangling the STRF from
C for an stimulus of arbitrary structure.

It can be shown, however, that for both an ideal-white
dynamic spectrum and for a TORC, but certainly not in
general, this expression reduces to a relatively simple
two-dimensional convolution between the STRF and a
spectrotemporal filter8(τ, x). For these two special
cases,8depends only on the channel difference,x− x′

and is given by the (two-dimensional) autocorrelation
of S (see Appendix B).

These autocorrelation filters, for an ideal-white stim-
ulus and for the TORC of Fig. 9B (method II), are
compared in Fig. 12. For white noise (A),8(τ, x) =
δ(τ, x), since the only nonzero channel cross-
correlations are those between each channel and itself
and are all identical, impulse functions. For the TORC

Figure 12. The two-dimensional autocorrelations of (A) ideal spec-
trotemporal white noise and (B) the TORC of Fig. 9B. See the text
for an explanation.

(B), the impulse is relaxed to asinc function in both
τ andx. This results from the restriction of the ripple
spectrum to low scales and rates and is allowed only
because of the expected smooth, band-limited nature
of the STRF. Besides the practical advantages that this
restriction brings, another fundamental practical ad-
vantage that TORCs have over white noise is that their
idealities are realizable, as long as the dynamic spec-
tra of stimuli can be predetermined with reasonable
accuracy.

It should be noted that, although it led to the devel-
opment of specific sum-of-ripples stimuli like TORCs,
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the employed Fourier analysis has nothing specifically
to do with ripple stimulation. Furthermore, its scope is
not limited to any specific time-frequency represen-
tation. As long as there is some linear relationship
between the employed representationS and the re-
sponse of the system, as embodied by some STRF,
the above conditions onS must be satisfied in order
for C to be justified as an accurate STRF estimate. In
addition, of course, the accuracy and completeness of
the estimate depends on the satisfaction of the condi-
tions imposed by the reverse correlation methodology,
which include time-invariance, and the lack of signifi-
cant higher-order nonlinearities.

The use of moving ripples was originally inspired
by the use of drifting sinusoidal luminance gratings in
vision research (Valois and Valois, 1990). It is hoped
that this development, performed in a spatiotemporal-
like input domain, will further facilitate the exchange of
ideas between the auditory, visual, and somatasensory
sciences. For example, the principles that make TORC
stimulation successful may be applicable to the design
of stimuli for use in other sensory systems.

Appendix A. K2 and the Generalized
STRF Functional

A large class of time-frequency representationsS of a
time waveforms, including the commonly used spec-
trogram, can be obtained by filtering the Wigner distri-
butionW of s (defined in Eq. (6)) (Cohen, 1995)—that
is,

S(t, f ) =
∫ ∫

g(t ′, f ′) ·W(t − t ′, f − f ′) dt′ d f ′.

(44)

Thus, each member of this general class can be spec-
ified, via the Wigner distribution, by the structure of
its corresponding filter functiong. For example, for a
spectrogram computed with a window functionh(t), g
is given by the Wigner distribution ofh (Cohen, 1995).

Using (44) forS in (1), one obtains

r (t) =
∫ ∫

STRF(τ, f ) ·
[ ∫ ∫

g(t ′, f ′)

·W(t − t ′ − τ, f − f ′) dt′d f ′
]

dτ d f

=
∫ ∫

STRF′(t ′, f ′) ·W(t − t ′, f ′) dt′ d f ′,

(45)

where

STRF′(t ′, f ′)=
∫ ∫

STRF(τ, f )

· g(t ′ − τ, f − f ′) dτ d f. (46)

Therefore, an STRF operating on the representation
S that corresponds to the filterg, is equivalent to
another STRF′ operating on the Wigner distribution,
where STRF′ is obtained by linearly filtering the orig-
inal STRF byg(t ′,− f ′). If the response of the sys-
tem is given by (1) and, equivalently, (45), then we
must haveSTRFK2(t ′, f ′)=STRF′(t ′, f ′) (by the ho-
mogeneity of the Volterra functionals) and so, via (7),
the system is also described byK2 (5).

Working backwards is a bit trickier. If the system is
described by (5) and, equivalently by (8), then it can
also be described by other STRFs operating on other
representationsS within this general class. However,
this is not true for any representationS. In this scenario,
other STRFs are obtained byinversefiltering STRFK2

with the correspondingg. Thus,g must have support
everywhere STRFK2 does in order forS to be useful.
In terms of ripple spectra, introduced in Section 3, the
ripple spectrum ofg cannot be zero anywhere that the
ripple spectrum of STRFK2 is nonzero, or elseS will
not be able to represent some of the acoustic features
that the system is responsive to.

Appendix B. The TORC Channel
Cross-Correlation Function

We start by restating (43), and substituting (10) forS:

8(τ − τ ′, x′, x)
1=
∫

S(t − τ, x) · S(t − τ ′, x′) dt

=
∑

k

∑
l

∑
k′

∑
l ′

ak,l ak′,l ′

× exp{ j [− 2π(wkτ +wk′τ
′)+ 2π(Äl x+Äl ′x

′)]}
· exp{ j (ψk,l + ψk′,l ′)}

∫
exp{ j 2π(wk + wk′)t} dt

=
∑

k

∑
l

∑
l ′

ak,−l ak,l ′ exp{ j [2πwk(τ − τ ′)

+ 2π(Äl x +Äl ′x
′)− ψk,−l + ψk,l ′ ]}. (47)

This development parallels that pursued in (23). One
can now define self-terms and cross-terms, depending
on whether they are the product of a stimulus compo-
nent with itself or the product of two different stimulus
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components. In fact, the self- and cross-terms in (47),
via the convolution of each with the STRF in (42), are
the progenitors of the self- and cross-terms in (23).

By definition, no two components of a TORC are
temporally correlated. Thus, only the self-terms will
survive in (47). Stated more precisely, no two compo-
nents of a TORC have the same|wk|. Thus, for a
givenk, there is only onel such thatak,−l 6= 0. Further-
more, there is only onel ′ (=−l ) such thatak,l ′ 6= 0.
Therefore, ifS is a TORC (47) reduces to

8(τ − τ ′, x − x′)

=
∑

k

∑
l

(ak,−l )
2

× exp{ j 2π [wk(τ − τ ′)+Äl (x − x′)]}. (48)

Thus, for a TORC, the cross-correlation between two
channelsx andx′ depends only on the channel differ-
encex− x′.

The the two-dimensional autocorrelation ofScan be
expressed, again using (10), as

α(t ′, x′) 1=
∫ ∫

S(t − t ′, x − x′) · S(t, x) dt dx

=
∑

k

∑
l

(ak,l )
2 exp{ j 2π(wkt ′ +Äl x

′)}.

(49)

Regardless of the stimulus structure,α is solely a func-
tion of the time-differencet ′ and the channel differ-
encex′. Thus, TORCs are among the special group of
stimuli, which includes ideal-white noise (none other
examples are known), whose channel cross-correlation
functions 8 are given by their two-dimensional
autocorrelation functionsα.
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Notes

1. The termdynamic spectrumis to be used throughout in a general
sense. It is meant to subsume all specific time-frequency repre-
sentations.

2. Negative frequencies are ignored here, since they provide no
additional information.
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