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Research Backgrouno

~+ NEURAL

;52" COMPUTATION

« MEG-based Auditory Neuroscience

» Cocktail-Party Auditory Processing

* Auditory Attention

 Neural Representations of Speech
 Fundamentally Temporally Neural Representations

* More at <http://www.isr.umd.edu/Labs/CSSL/simonlab/>


http://www.isr.umd.edu/Labs/CSSL/simonlab/

leaching Background

 Courses in Two Departments (with very different students)
» Electrical & Computer Engineering
e Biology

* Developed course: “Quantitative Analysis of Biological Data”
for Neuroscience/Cognitive Neuroscience/Biology graduate students

* Feel very free to ask “stupid” questions (they're not).
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The Fourier Transform

Every [ime-

Domain Signal can be

Re-expressed as a Sum of Sinusoids/

Oscillations

of time points = # of frequencies

Reciprocal relationship: time
resolution (At) & sample frequency (fs)

Reciprocal relationship: frequency
resolution (A1) & duration (T)
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Fourier Transform: Time-Frequency Tradeoft

 Every Time-Domain Signal can be
Re-expressed as a Sum of Sinusoids/

Oscillations

* # of time points =

of frequencies

Reciprocal relationship: time

resolution (At) & sample frequency (fs)

Reciprocal relationship: frequency

resolution (Af) & duration (T)
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Fourier Transform: Time-Frequency Tradeoft
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Fourier Transform: Time-Frequency Tradeoft

1 RPEO8q P08
0 Q 0 Q
081 0 \ 0 X
0.6 0 O 0 4)
0.4
D €)
QO )
0.2
D D
0Geecacscne® b ”c========================================" & OO
02| y f At =10 ms I'=1000 ms Wi
2 CR
! ! ! ! I 0.4 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t(s) t(s)
0
D
- 10 F
f. =100 Hz Af =2 Hz f. =100 Hz Af =1Hz
Q 0}
Q
= 5F
Q@
Q
® @ R
f.12 =50 Hz ? f.12 =50 Hz
T ?QQ—@—e—@—Q—G—e—G—e—e—e—e—e—e—e—e—@ 0 cr T CP? 20! 2 -
0 10 20 30 40 50 0 10 20 30 0 50
f (Hz) f (Hz)



-0.4

10

Break for Computer Lab Exercise 1
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Fourler Transtorm: Practical Uses

 Measured Signals made up of
several (many?) sources

e All overlap In time

 But overlap in frequency may be
much less
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Fourler Transtorm: Practical Uses

 Measured Signals made up of
several (many?) sources

e All overlap In time

* But overlap in frequency may be 'Z:;‘O‘

much |less

* Can filter measured (mixed)
signal to “recover” underlying
source signal
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Break for Computer Lab Exercise 2
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Filters: Frequency Selectivity

* Frequency Selective Filters
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Filters: How Selective?

 How sharp a transition?
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Filters: How Do They Work?™

Output of Filter: Examples:

e Linear Combination of Input Signal ylt] = lx[t] + lx[t — At ]
and Earlier Versions of the Input 2 2
Signal

. L . 1 9

e Linear Combination of Input Signal ylt]|=—x[t]—-—y|t - At]
and Earlier Versions of the 10 10
Output Signal

« Linear Combination of Input Signal ylt]=xlt]—x[t - At]+x[t - 2Az]
and Earlier Versions of both the 09 09 2
Input and Output Signals n y[t = At] - ( ) y[t = 2At]
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=xample: [wo-Point Moving Average

What to Expect:
* Smooth over rough patches

| | » Soften sudden changes

ylz] = Ex[t] + Ex[t — At ]

* | eave slowly varying signals largely
unchanged

e | ow Pass Filter?
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Example: Two-Point Moving Difference

What to Expect:

 Exaggerate differences

x[t]— x|t - At]
2

 Amplity quickly varying signals

ylt] =

e Attenuate slowly varying signals

 High Pass Filter?
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Example: Two-Point Moving Difference
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Break for Computer Lab Exercise 3
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How do Filters aftect Frequency”?

N-1
* Every Time-Domain Signal can be x[t] = iEX[fk]eiZIL’fkt where:
Re-expressed as a Sum of N & '

Sinusoids/Oscillations

of time points = # of frequencies

* Recliprocal relationship: time
resolution (Af) & frequency span (fs)

* Reciprocal relationship: frequency
resolution (Af) & time span (T)



The Fourier Transform

Every Time-Domain Signal can be
Re-expressed as a Sum of
Sinusoids/Oscillations

of time points =

of frequencies

Reciprocal relationship: time
resolution (Af) & frequency span (fs)

Reciprocal relationship: frequency
resolution (Af) & time span (T)

1 <« 127 [t
x[z‘]=—EX[fk]€2 " Where:
Nk=0
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The Fourier Transform
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Fllters and the Fourier Transtorm
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Fllters and the Fourier Transtorm
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Fllters and the Fourier Transtorm
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Fllters and the Fourier Transtorm
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Fllters and the Fourier Transtorm
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Fllters and the Fourier Transtorm
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Fllters and the Fourier Transtorm
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Break for Computer Lab Exercise 4
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Outline

e Filters: What They Do, and How They Do |t



Outline

» Filters: Why So Many Different Kinas? Which Should | Use and When'?



“Which Filter Should | Use””

—Almost every student I've ever worked with



Many Fliter Decisions

Frequency Selectivity: Sharp vs. Soft Frequency Transition
Feedforward Only/Feedback: FIR vs. |IR

Filter Order: Low order vs. High Order

Causality: Causal vs. non-Causal (e.g. “zero-phase’ filters)

and more (e.q., FIR: moving average vs. Parks-McClellan, |IR:
Butterworth vs. elliptic)



l[deas to Keep In Minad

Filters modity signals, by design.

There is no such thing as a filter that leaves signals (or signal
components) unaltered

Most filter decisions involve considering valid tradeofts
 Don't go overboard one way or the other (it you do, be prepared).

Some filter decisions allow us to avoid artitacts without any tradeoft



Frequency Selectivity/Transitions

* [Ime and Frequency are inextricably linked.

 Changing the frequency content of a signal will change the temporal
content of the signal.

* |ow-Pass Filters will lengthen fast temporal changes

* High-Pass Filters will remove slow transitions from one baseline to
another

e Sharp frequency transitions produce artificial temporal elongation:
‘ringing .
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Nnging Artifacts
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RiNnging Artifacts
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RiNnging Artifacts
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RiNnging Artifacts
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Break for Computer Lab Exercise 5
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RiNging Artifacts

o Sharp Frequency Transitions are sometimes Necessary
* e.g., Notch tilters (and related filters, such as Comb filters)

* |n these cases there will be unavoidable ringing



RiNnging Artifacts

f (Hz)

Notch Filter
(Sharp Frequency Transition)



RiNnging Artifacts
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RiNnging Artifacts
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lake care, but don't overreact

* Avoid Ringing by avoiding sharp W
frequency transitions o 1 2

e |f sharp frequency transitions are 1
necessary (as for notch filtering), ringing |
may follow

/ N\

* Don't overly soften frequency transitions AN
or you'll lose frequency selectivity A

0 4 8 12 16 20
f (Hz)

0



IR vs. IR

* FIR (finite impulse response): Feedforward only

* Examples: Moving Average (avoid, in general), Parks-McClellan
(“Optimal”), others

e |IR (infinite iImpulse response): Feedback also incorporated
e [nstablility a potential issue

 Examples: Butterworth (not awful, but not great), Chebyshev, Elliptic
(very good), others



FIR vs. |IR: How to choose”

No universal answer. It may depend on:

group delay (signal delay intrinsic to filter): both the value of the
delay and frequency dependence of that value

signal loss due to filter startup (output value dependence on signal
values before signal starts)

stability concerns (it lIR filter)

more...



Group Delay

* |ntrinsic to filtering—cannot be removed

» Filtering changes signals by design—all tilters change temporal
features of the signal

o Causal filters always incur delay



Group Delay Examples
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Group Delay Examples
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Group Delay Examples
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Group Delay Examples
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Group Delay Examples
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Group Delay: FIR filters

Group delay corresponds to “average” delay imparted by time-shifted tilter terms.

The group delay of an FIR filter does not depend on frequency.

The order of an FIR filter, Noqer, 1S the number of time shifts of the most delayed
component (same as the length of the filter, minus 1).

The group delay of an FIR filter is At x Norged 2.
* The higher the order, the longer the group delay
* Calculating latencies” You may need to compensate (especially for peak latencies).

 Smaller At = smaller delay. So it possible, tilter at high sampling frequency.



FIR Group Delay: General Signals

For non-sinusoidal (multi-frequency)

signals, group delay still applies, but x|}
how it manifests depends on the
specific signal features.
ylt]= 1x[t]+ 1x[t At |
2 2

Goece




FIR Group Delay: General Signals

For non-sinusoidal (multi-frequency)
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specific signal features.
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FIR Group Delay: General Signals

For non-sinusoidal (multi-frequency)

signals, group delay still applies, but x|}
how it manifests depends on the
specific signal features.
ylt]= 1x[t]+ 1x[t At |
2 2
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Group Delay: IR filters

 The group delay of an IIR filter does depend
on frequency.

i

ol group delay
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Group Delay: IR filters

* The group delay of an IIR filter does depend magnitude

on frequency. \
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Group Delay: IR filters

* The group delay of an IIR filter does depend magnitude
on frequency. \

 The group delay of an lIR filter is relatively O | | , .
constant over frequencies that are “passed”. o 10 20 - 0 >

f (Hz)

20 /Qde‘ay
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Group Delay: IR filters

 The group delay of an IIR filter does depend

on frequency.

 The group delay of an lIR filter is relatively
constant over frequencies that are “passed”.

 The group delay of an IIR fi

during the frequency transiti
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Oon.

|

0

20

T (ms)

10 |

-

ol

magnitude

iﬁ

0 10

20

30 40 50
f (Hz)

group delay

0 10

20

30 40 50
f (Hz)



Group Delay: IR filters

The group delay of an |IR filter does depend |

on frequency. \
The group delay of an |IR filter is relatively | | ,

0

constant over frequencies that are “passed”.  © 10 0

The group delay of an |IR filter is longest 20r
during the frequency transition.

T (ms)

10 |

The group delay of an IIR filter may be 0 10 0
irrelevant over frequencies that are
"stopped”.




* The frequency
filter is longest.
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Group Delay: lIR filters
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* The frequency

Group Delay: lIR filters

ransition Is where the group

delay of an |IR
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* The frequency
delay of an |IR

Group Delay: lIR filters

transition is where the group
filter is longest.

* [he sharper the transition, the longer the

group delay
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* The frequency
delay of an |IR

Group Delay: lIR filters

transition is where the group
filter is longest.

* [he sharper the transition, the longer the

group delay
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delay of an |IR

Group Delay: lIR filters

* The frequency transition |

S where the group

filter is longest.

* [he sharper the transition, the longer the
group delay

o (Calculating latencies” You may need to
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* The frequency
delay of an |IR

Group Delay: lIR filters

transition is where the group
filter is longest.
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group delay
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Group Delay may not Matter

For many experimental designs, only differences of latencies matter,
not absolute latencies.

For such experimental outcomes, most neural features’ shape
differences are not large.

If both hold, separate group delays cancel out for latency difference.

For such experiments, you may not have to compensate for group
delay at all



Signal Loss due to Filter Startup

* Qutput signal value depends on signal values in the past

 \When calculating output at the very first moment of time, there is no
past to rely on!

o Until filter output settles down, in time, the output signal is not well
defined.



Signal Loss due to Filter Startup

For FIR filters, this problem goes away entirely after Norger X At

V1] =%x[r]—%x[r—m]




Signal Loss due to Filter Startup

For FIR filters, this problem goes away entirely after Norger X At

I I . ool
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Signal Loss due to Filter Startup

For FIR filters, this problem goes away entirely after Norger X At

Lo o as o012 Lao]- L ar L)
Y[t]=EX[t]—EX[t—At]- Y[O]—ZX[O] 2)6[ At]  y[Ar] 2X[At] 2X[O]




Signal Loss due to Filter Startup

IR filters, this problem goes away entirely after Norger X At

For

1 1 1 1

1 1

tl=—xlt]-—xlt-At]: y[0]=—x[0]-—x[-Ar]  y[Ar]=—x[At]-—x[0]

2 2 2 2

2 2

Recommendation: either keep extra earlier data of duration Norger X At, OF
orepend the same amount of zero signal (Matlab’s default). Consider this

‘warmup” time for the filter. Then toss out th

This works well for small N, qer.

IS same amount from the output.

This is another reason to use FIR filters only of low order.

This is another reason FIR filters may work best at high sample rates.



Signal Loss due to Filter Startup

—or IR ftilters, the problem is more subtle

1 9
ytl= Ex[t] 0 ylt - At]



Signal Loss due to Filter Startup

—or IR ftilters, the problem is more subtle
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Signal Loss due to Filter Startup

—or IR ftilters, the problem is more subtle

] 9 | 1 9 1 9
y[t]—ﬁx[t] 1Oy[t—At]. yl0] = 1Ox[O] 1Oy[ At ] yl At ] 1Ox[At] 1Oy[O]




Signal Loss due to Filter Startup

—or IR filters, the problem is more subtle

1 9 1 9 1 9
t]|=—x|t t—At]: O]=—x[0 —At At]|=—x[At 0
ylt] 1O[]loy[ ] y[O] 10[]10y[ ] ylAt] 10[ ]1Oy[]
* The output depends not only on the input in the past, but also on the filter output of
the past.

« Recommendation: again keep extra earlier data (warmup time), as much you can
afford. Then toss out the same amount from the output.

e |[f keeping enough earlier data not feasible, Matlab permits supplying pre =0 initial
data. Using this with reasonable values can really help shrink warmup time.

* Even prepending data from the end of the signal may help over nothing.



Stability concerns for IR filters

IR filters employ feedback; might be negative (good) or positive (bad)
Common IR filters designed to be stable: all feedback negative (good)
Design can break down due to numerical roundoft error

Breakdown more likely for higher order filters

Recommendation: only use low order (Noer < 10) IR filters.

e Lower order IR filters also have less sharp frequency transitions, so
this Is rarely a burden.



How Would | even Notice Instability”?

t's not subtle (but only if you know where to look)

Raw Signal Stable Filter
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How Do | Choose a Filter?

For high sampling frequency and plenty of initial data, consider FIR filters
* This is typically appropriate for raw, un-epoched data.

e Parks-McClellen (“optimal”) filters work well. Can choose soft frequency
transitions.

* (Report the filter choice and order, as well as all cutoff frequencies and any
other specified parameters, in your Methods section.)

» [ake care with software “black-box” FIR filters. Maybe good, maybe not.

e How much quality signal processing does the software author know?



How Do | Choose a Filter?

Otherwise, consider IR filters

* This s typically appropriate for epoched data.

e |f can’t be bothered, Butterworth filters are “tine”.

* |freally can’t be bothered, use a 4th order Butterworth.

* |f you care about your frequency bands, consider using an Elliptic filter.

* (Report the filter choice and order, as well as all cutoff frequencies and any other
specified parameters, in the Methods section.)

o Software “Black-box” IIR filters usually not worrisome, even if not optimal for data.



How Do | Choose a Filter?

If you care about your frequency bands, consider using an Elliptic filter

 Needs “slop” factors/tolerances

* |nthe pass frequency band, how c
really need? It your peak height we

* Matlab requires this (“passband

ose to “1” (100% passes tr

rough) do you

e off by only 1%, would yo

ripple”) to be in dB: 1% = 0.1 dB

J even notice?

* |n the stop frequency band, how close to “0” (0% passes through) do you really
need? |f your noise is suppressed only by 100x (not infinitely), would you notice?

 Matlab requires this (“stopband attenuation™) to be in d

3: 100x = 40 dB




Outline

» Filters: Why So Many Different Kinas? Which Should | Use and When'?



Outline

* (Grab Bag:

o Use Causal Filters; Windowing is Good



Grab Bag

e Use Causal Filters



Causal & non-Causal Filtering

All filters discussed hear are causal.

e Variation in the input signal causes variation in the output. The output
variation occurs at the same instant as in the input, or, most likely,
later, but never earlier: Lengthening/Delay is normal.

 Some types of lengthening are desirable: using a low pass filter to
slow down fast changes in the input signal.

e Some types of lengthening are undesirable: ringing due to sharp
frequency transition.




Causal & non-Causal Filtering

't Is mathematically possible (but biologically undesirable!), to
temporally “center” all such output changes so they do not seem to
be all contribute to delay.

This (undesirable act) can be achieved with a particular kind of non-
causal filtering: zero-phase filtering (Matlab “filtfilt").

Zero-phase sounds wondertful, but it is not (c.f. “ideal” filter).

/Zero-phase filters do not remove delay-based artifacts, and in fact
they double them.



/ero-Pnase Flitering eExample
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Spectrogram
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® causal




/ero-Pnase Flitering eExample

Notched FM Sweep /ero-Phase Notched

FM Sweep

FM Sweep
(Spectrogram)
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RINgINg: T
® persistent
® causal

RINQINQ:

e duplicated and flipped

e No cancellation (except
‘on average™”?)



Causal & non-Causal Filtering

Zero-phase filters do not remove distortions, but instead replicate them backwards in
time (symmetrically, if signals are ~symmetric).

Replicating them backwards may give zero “on average” but not actually zero.

Large, Longer Latency neural features (e.g., motor system responses) can be
artiticially shifted backwards in time(!).

-+ Detection/Decision event may be contaminated with future Motor responses.

Compensation for delayed teature-peak may even be OK, but be very careful about
other features: not-actually-delayed rise-to-peak replaced with pre-causal rise-to-peak.

Recommendation: Don't use. Causes more problems than solves.



Break for Computer Lab Exercise 6

Zero-phase filters do not remove distortions, but instead replicate them backwards in
time (symmetrically, if signals are ~symmetric).

Replicating them backwards may give zero “on average” but not actually zero.

Large, Longer Latency neural features (e.g., motor system responses) can be
artiticially shifted backwards in time(!).

-+ Detection/Decision event may be contaminated with future Motor responses.

Compensation for delayed teature-peak may even be OK, but be very careful about
other features: not-actually-delayed rise-to-peak replaced with pre-causal rise-to-peak.

Recommendation: Don't use. Causes more problems than solves.



Grab Bag

* Windowing is (Good



‘Fourier coefficients do not always mean what you think they mean.”

—The Princess Bride (paraphrased)



Windowing and Frequency Resolution

* Frequency resolution (Af),
the limiting factor in
distinguishing one
frequency from another, Is

determined by the total I acioms v 4 (T o500 m
duration of the signal (T). R I
t(s)
* This relationship is the time- P ¢ _100 Hz Af =2 Hz
frequency conjugate of the ?

relationship between and
temporal resolution (At) and
sampling frequency (fs).
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Windowing and Frequency Resolution

e |t S sometimes desirab

IN order to attenuate noi

e to “smear” information temporally (e.qg. low-pass filter

se).

* The effective time resolution is worse, even though Af remains unchanged.

* Analogously, it is sometimes desirable to "smear” informati

(e.g. power spectral density estimation or spectral leakage

on over frequencies

Mi

nimization).

* The effective frequency resolution becomes worse, even though Afremains

unchanged.

* This frequency smearing is typically accomplished by windowing in the time

domain.



Spectral Leakage

T =500 ms
Example | A A A A A A A A A A
A pure sinusoid (single 0 0
frequency). 1SS GO O S
INn the Fourier domain it has a S S S S S S S S S
. . 0 0.1 0.2 0.3 0.4 0.5
single Fourier component. At =5 ms t (s)
f. =200 Hz
x[t]=cos(2xf 1)
f. =20 Hz
dCCCCCCCC’JZéJCCCCCCC(ZJ)(;JCCCCCC06‘6(')0()030030038’3633033033%‘00

Af =2 Hz f (Hz) f./12=100 Hz



Spectral Leakage

T =500 ms
Example 2 A AR T SR i o4k
A pure sinusoid (single o A O A
frequency). 1 G O l JE ]
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f. =200 Hz

x[t]=cos(2mf,t)
f, =21 Hz

Af =2 Hz f./2=100 Hz



Spectral Leakage

T =500 ms
Example 2 A AR T SR i o4k
A pure sinusoid (single o A O A
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What does it look like in the ; 0T 5 a Y o's
Fourier Domain? At=5ms" Ct(s) |

f. =200 Hz

x[t]=cos(2mf,t)
f, =21 Hz
Af =2 Hz

Af =2 Hz f./2=100 Hz



Spectral Leakage

= e 0 T =500 ms
Xamplie o ® @
° I :)0 il CSDO it CPO (IO CSPQ OOO OOO 0%
A pure sinusoid (single o A O A
frequency). 1 G O l JE ]
o O 5 O (.f ol It O I G |
. . . o
What does it look like In the 2 & .0 &, £ o ° o &
. . 0 0.1 0.2 0.3 0.4 0.5
Fourier Domain® At =5 ms t (s)
f. =200 Hz
x[t]=cos(2mf,t) Does it look like this?
f, =21 Hz I
Af = 2 HZ 2500600806 05060008000060600000800000000060000066
0 20 40 60 80 100

Af =2 Hz f (Hz) .12 =100 Hz



Spectral Leakage

T =500 ms
Example 2 A S A S A S N A
A pure sinusoid (single i j 1 T® J'T j .l T@ JT T@ all
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Spectral Leakage

T =500 ms
Example 2 A S A S A S N A
A pure sinusoid (single i j 1 T® J'T j .l T@ JT T@ all
frequency). L l lf l l <L‘L$ l IF l $
What does it look like In the 0 e OHO . Oi;f - Oi; : O?L: - 05
Fourier Domain” At =5 ms t (S)
f, =200 Hz
x[t]=cos(2mf,t) . 't looks like this (!)
f, =21 Hz T What is going on?
—_— <m_@_@_@®@CPCFT CFCP?CPCPCP PRRRDRPVRDNRRRRRRRRRDRRQRRRRQQD
Af =2 Hz 0 20 0 60 80 100

Af =2 Hz f (Hz) f,/2 =100 Hz



Spectral Leakage

T =500 ms
A sinusoid whose single frequency PSR S (AN S R T AR S A
IS not a Fourier frequency exhibits ? T J I f J f
Spectral Leakage. I T illi TIT i T O<?T ])@ T W) ¢T
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Spectral Leakage
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Spectral Leakage

What is the origin of spectral leakage”

This signal is a cosine, but not periodic
with period 2m. The ends do not match.

his can be seen by rotating the signal
oy 1/2, which does affect the Fourier
transform in magnitude.

Signal discontinuities are spectrally
broadband!

f, =21 Hz
Af =2 Hz

T =500 ms
) Y
( b | |
| J/
0 0.1 0.2 0.3 0.4 0.5
At =5 ms t (s)
f. =200 Hz
o9
cl@.@.@ﬂ@@‘P?T TT??@@@@¢®@@M@.@@.@M@M@.@.&@.@M
0 20 40 60 80 100
Af =2 Hz f (Hz) f,12=100 Hz



Spectral Leakage
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Spectral Leakage
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Spectral Leakage
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Windowing & Freguency Resolution

* Windowing to attenuate spectral leakage is critical for frequency
estimation (spectral power, spectrogram, etc.).

* Achieved by blurring neighboring frequencies/decreasing effective
frequency resolution (typically by ~2x).

e |f you ultimately need an final spectral resolution of Af, you actually
require a signal duration of ~2/Af (not just 1/Af).

e For example, 1 Hz resolution, without spectral leakage corruption,
requires ~2 s signal duration. 2 Hz resolution, without spectral
leakage corruption, requires ~4 s signal duration.



Outline

Fourier Transtorm: Why Its Useful, and What it Can/Cannot Do For You
Filters: What They Do, and How They Do It
Filters: Why So Many Different Kinds? Which Should | Use and When'

Grab Bag:

o Use Causal Filters; Windowing is Good; Low-Pass your Envelopes



Conclusions

Fourier Transforms and Filtering is Complicated

But not Too Complicated

Mathematical Definitions will always Win/Tie over Intuition
But Guided Intuition will put on a Strong Show

Debugging using Guided Intuition faster than using Math



