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Introduction

e Sound localization by birds requires computation of interaural
time differences (ITDs) in Nucleus Laminaris (NL)

e A robust coincidence detector neuron should fire when inputs
from two independent neural sources coincide (or almost
coincide), but not when two inputs from the same neural source
(almost) coincide

*NL has a distinctive tonotopic gradient for dendritic length and
other anatomical (and biophysical?) parameters. Presumably
this is important.

eThis biophysical model, using NEURON, examines how NL
neurons detect and report ITDs, primarily based on physiology
and anatomy of chick (with generalizations to other birds)

eTwo versions: one with reasonable coincidence detection/ITD
discrimination, and the other, still work in progress, with data
tied to chick as closely as possible

eAdditional emphasis: user-friendly model
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Model Description
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/1 global parameter:
Lab

/1 global x

/1 global output
/7 allows use of NetCons and

/1 protect graphs from garbage

~7500 lines/100 pages of NEURON code

Computational Sensorimotor Systems Laboratory



Soma

Length/Diameter, e.g. 20 um

Leak conductance, e.g. 0.0002 S/cm?

KLVA (Low Voltage Activated)
conductance, e.g. 0.01 S/cm?

KHVA (High Voltage Activated)
conductance, e.g. 0.05 S/cm?

Na conductance, e.g. 0.05 S/cm?
Axial resistivity, e.g. 2 ohm-cm

Number of compartments, e.g. 3
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Dendrites
Number of dendrites, e.g. from 2 to 26

Length, e.g. from 10 to 700 um

Diameter, e.g. 2 um

Leak conductance, e.g. 0.0002 S/cm?
KLVA conductance, e.g. 0.0015 S/cm?

KHVA conductance, e.g. 0.07 S/cm?

Axial resistivity, e.g. 2 ohm-cm
Number of compartments, e.g. 9
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Excitatory Synapses
Maximum synaptic conductance, e.g. 0.007 uS
T (of a function), e.g. from 0.1 to 0.3 ms
Synaptic reversal potential, e.g. 0 mV

Number of synapses per dendrite, e.g. a few to ~ 100 |

Distribution, e.g. uniform, or all at tip
Independence of individual synapses

Minimum interval, e.g. 1 ms -
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AXon

Hillock

Length, e.g. 30 um

Diameter, e.g. 2 um

Leak conductance, e.g. 0.0002 S/cm?
KLVA conductance, e.g. 0.0015 S/cm?
KHVA conductance, e.g. 0.07 S/cm?
Na conductance, e.g. 0.05 S/cm?2

Myelinated Segment

Length, e.g. from 60 um

Diameter, e.g. 2 um

Leak conductance, e.g. 0.000004 S/cm?
Capacitance, e.g. 0.02 uF/cm?

Axial resistivity, e.g. 2 ohm-cm
Number of compartments, etc.
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Neuron-wide Parameters
Reversal Potentials

Eng €.8. +40 mV
Ek,e.g. 80 mV
Ef cak» €-8. =50 mV

KLVA activation
ag-VA, e.g. 0.05 ms
ocVHalfLVA, e.g. —-50 mV

QoMYA e.g. 2x/(10 °C)

+ KL'VA deactivation

+ KHVA activation & deactivation

+ Na activation, deactivation, inactivation & deinactivation
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(Slow) Inhibition

Integrate & Fire
Maximum synaptic conductance,
e.g. 0.08 uS
T (of a function), e.g. 8 ms
Synaptic reversal potential, e.g. -55 mV
Delay, Integration factor

OR

Model of Superior Olivary Nucleus (SON)
Hodgkin-Huxley-like model
with NL & NA input
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Stimulus & Conductance Input
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Estimating Model Parameters

10 mV
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Estimating Model Paraters

Firing Rates from Somatic EPSCs

600 Hz

a la Reyes et al 1996

/

16 32 48 64 80
# Simulated NM inputs

_omputational

Kv3.1 immunoreactivity
# (red, CYC3) in low BF
region of NL outlines
cell bodies and proximal
dendrites of NL neurons.

NM terminals in NL are
delineated by staining

i with the synaptic vesicle
& marker (SV2, green
FITC).

Parameshwaran et al 2001

Synaptic vesicle
protein (SV2)
Immunoreactivity in
NM labels endbulb

terminals in NM

ensorimotor Systems Laboratory



Tonotopic Gradients

Transverse section
labels both NM and
%7~ NL and shows
: ot ‘ﬁj tonotopic increase in
“w+¢ dendritic length with
¥ ine b
. ecreasing best
frequency in NL
[Microtubule
A associated protein
L' (MAP2. FITC)
“7 immunoreactivity]

i

Oblique section
approximately isofrequency
slab—dendritic length
approximately constant

NM Vector Strength
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from Koppl, 1997, Warchol & Dallos, 1990.
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Searching Parameter Space

Brute force approach when all else fails

Distributed over > 30 Sun workstations via shared filesystem
Asynchronously, fault tolerant, crash resistant

Runtimes = few hours — few days

Slightly less than linear scaling with nodes (e.g. 3.5x /5 nodes)

Does not compensate for

1) exponential dependence on

number of parameters and resolution
OR

2) lack of physiological common sense
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Voltage, Conductance, Inputs

binaurally
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Spike Rate Ratio (at axon tlp‘d,

Same stimulus probability distributions,
e.g., f =1 kHz, VS = 50%
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Phase Locking

Frequency/Den. Length Input VS

Rate IPDS 400 12000 Hz 26 um 14 %| 11414 Hz 42 um 29 % | 11000 Hz 68 pum 43 % | 100
Vector-strength
IPDs 2001 Vector Strength 50
100 | 125 <~
o
. a
20 ‘ 0o =
o
2z &
S =
< 707 Hz 111 58 %o 500 Hz 181 um 73 % 354 Hz 293 um 88 % —_
m 400 | | [ w ] [ N - 1100 O\O
300 | — — — — 175
200 | f — f — 150
100 | — — — — 125
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0
180 90 0 90 180 -180 -90 0 90 180 -180 -90 0 90 180
Interaural Phase Difference [°]
Note: Over-enhancement of output VS over input VS:

VS-coded IPD curves appear flat
Over-suppression of rates for nearly out-of-phase inputs:
rate-coded IPD curves appear too sharp
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ITD Discrimination

. out-of-phase rate
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(high ratio) until ~2 kHz. 100 50 2 9100 %

Sharp phase tuning appears
as ceiling effect on ITD
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0 %
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ITD Discrimination—Barn Owl

dendritic length [um]

100 50 25
e ' " 100 %

500 In-Phase Rate
S Out-Phase Rate
i =
;L =. Discrimination
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but Barn Owl vector
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1 100 %

Adding more dendrites
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Synaptic Sub-Linearity

dendritic length [um]

200

100 %

500 1000 2000
stimulus frequency [Hz]

Synaptic reversal potential more depolarized ~
reduces dendritic sub-linearity s

worsening discrimination
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Dendritic Length Gradient Predicted

100 -
Intra-dendritic
sublinearity leads to
optimal dendritic
length, as shown by = 75
Agmon-Snir et al.
1998

1414 Hz
1000 Hz

500 Hz

—o—
_e_
—©— 707Hz
—O—
—6— 353 Hz

For every stimulus
frequency there is a
dendpritic length,
longer than which,
performance no
longer increases. 25|

50@——9/9/6\9

Discriminatio

The effect is most
pronounced at lower
frequencies.

O | | | | | |
20 30 50 100 200 300 500

dendritic length [um]
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Subtraction Non-Linearity

dendritic length [um]
50

200 100
One cell/different stimuli
Out-of-phase 7 00| In-Phase Rate
rate suppressed g /\ Monaural Rate
relative to EIN Out-Phase Rate
monaural rate 2 250 /
0 |
_ - Different cells/same monaural stimulus .
Potassium acts 3 so0f Dendrite removed
as current sink é Normal Cell
— sor High K Conductance
— I
0 ] ]
500 1000 2000

stimulus frequency [Hz]

Cells fire well with no stimulus on the opposite side.
Not just a “coincidence” detector
Effect present at all frequencies

Meeting of in- and out- rates at ~ 2 kHz a consequence of
poorly phase-locked inputs

Computational Sensorimotor Systems Laboratory



Non-Linearities

] \K K
TN PN 97 A
\ﬁ} \\% A

Potassium’s effect is subtractive Synaptic inputs add sub-linearly

“subtracts when nothing positive to add”) (“more inputs don’t add as much you’d think”

At all frequencies, including high Only at low — middle frequencies

Found by Agmon-Snir et al. 1998
Both effects reduce false positives

Firing Rates with non-linearities without non-linearities

In-Phase /\/\/\/\ /\/\/\/\
too many false positives
Out-of-Phase | ——————— W
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Results

e Typical chick-like parameters allow ITD discrimination up to 2 kHz.

e Typical chick-like parameters but with barn-owl-like phase locking
allow ITD discrimination up to 6 kHz.

e Two non-linearities aid ITD discrimination:
1) intra-dendritic inputs sum sub-linearly:

2) inter-dendritic interactions subtractively inhibit out-of-phase
inputs.

e Response to monaural input does not require spontaneous activity
from opposite side.

e Rate-coded ITD tuning curves convey more information than Vector-
Strength-coded curves (despite/due to Vector Strength enhancement).

e Adjustments to tie parameters even more closely to the biology are in
progress.
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Model Description

The model emulates an array of neurons, each with an adjustable number of dendrites, a soma, and an
axon with an axon hillock, a myelinated segment, and a node of Ranvier. Each section has an adjustable
number of equipotential compartments. All geometric, electrical, and channel parameters are
adjustable, as are the number of synapses/dendrite, the synaptic locations, and the distribution of
synaptic locations. Channel types include potassium (high [~Kv3.1] and low voltage activated

[~Kv1.1, 1.2] and delayed rectifier), sodium, and passive. Values were obtained from physiological
studies of Nucleus Magnocellularis (NM) and NL. Voltage dependent channels are specified by
Hodgkin-Huxley-like parameters. Each neuron in the array feeds into a single inhibitory neuron, which
feeds back onto all neurons in the array.

The stimulus is a pure tone of adjustable frequency, with each neuron in the array receiving a different
interaural phase difference (or contralateral monaural stimulus with variable ipsilateral spontaneous
activity). More complex stimuli can be easily introduced.

The synapses fire with conductance proportional to an alpha-function, with adjustable time constant,
peak conductance, and reversal potential. The excitatory synapses fire as individual Poisson processes,
with probability rate given by a exponentiated sinusoid, with adjustable amplitude and vector strength.
The inhibitory neuron is a simple integrate-and-fire neuron.

The implementation uses the program NEURON and has a graphical user interface for controlling
parameters and running the model. There is a real-time display of data and analysis including:
membrane potential at multiple locations, the two stimuli, synaptic firings, spike counts, period
histograms of synaptic firings and action potentials, and their vector strengths.



