High Frequency Time Locking in Human Auditory Cortex to Continuous Speech

Joshua P. Kulasingham¹, Christian Brodbeck¹, Alessandro Presacco¹, Stefanie E. Kuchinsky^{2,1}, Samira Anderson¹, Jonathan Z. Simon¹

¹ University of Maryland

² Walter Reed National Military Medical Center

Background: Auditory Responses

- Complex sounds represented in brain using timelocked responses.
- Response frequency decreases up the auditory pathway
- Fast EEG Frequency Following Response (FFR)
 - Subcortical sources
 - Typically above 100 Hz
- Slow MEG/EEG responses to the speech envelope
 - Auditory cortex
 - Below 20 Hz

Background: Frequency Following Response (FFR)

Adapted from Coffey et al., Nat Commun (2016)

Background: Frequency Following Response (FFR)

Adapted from Coffey et al., Nat Commun (2016)

Fast MEG Responses to Continuous Speech

"pitch (ca. 100 Hz) elicited a neural resonance bound to a central auditory source at a latency of 30 ms"

Hertrich et al., Psychophysiology (2012)

Motivation

- Explore fast time-locked cortical responses to continuous speech
- Time-locking to the high frequency envelope or carrier of the speech?
- Hearing ability declines with aging
 - Subcortical fast EEG response: younger > older
 - Cortical slow MEG/EEG response: older > younger !!
 - Cortical fast MEG?

Methods

- MEG recorded from 17 younger (18-27 yrs), 23 older adults (61-78 yrs)
- Listening to male narration of an audiobook.

1 minute x 6 trials

Previously published data: Presacco et al., 2016a, b

- Regions of interest (ROIs)
 - cortical (temporal lobes)
 - subcortical (includes brainstem)

Methods: Temporal Response Function (TRF)

Methods: Temporal Response Function (TRF)

Methods: Temporal Response Function (TRF)

(Yang et. al. 1991)

HFE TRF is stronger than Carrier TRF

Results: Cortical vs. Subcortical

Peak latency of 38ms => Cortical origin

Results: Younger vs. Older

Response Model Fit Younger

No significant age related difference!

Results: Younger vs. Older

Response Model Fit Younger

Lateralization Younger

No significant age related difference!

Right lateralized only in younger

Results: Frequency Domain

TRF oscillation frequency around 80-90 Hz

Results: Frequency Domain

TRF oscillation frequency around 80-90 Hz Speech power largest around 70-75 Hz (HFE) or 110-120 Hz (Carrier)

Where do these responses come from?

- Cortical neurons don't phase lock at 80 90 Hz.
- But thalamic neurons can!
- Output of thalamic neurons are inputs to auditory cortex
- MEG can see dendritic inputs (LFP)

Summary

- Fast MEG cortical responses to continuous speech with latency 40 ms in auditory cortex.
- Mainly to the HFE and not carrier.
- Oscillation at 80-90 Hz, not driven by stimulus spectrum directly.
- Possibly thalamic inputs to cortex
- Right lateralized (in younger subjects)
- No significant age related differences! Unlike fast EEG FFR (younger > older) and slow cortical responses (older > younger)

Acknowledgements

Computational Sensorimotor Systems Lab

Christian Brodbeck Alessandro Presacco Peng Zan Dushyanthi Karunathilake Poster available at http://ter.ps/simonpubs

Funding: NIH R01-DC014085, NIH P01-AG055365

