Auditory Cortex Tracks Acoustic Onsets of Ignored Speech: A Potential Mechanism in Stream Segregation Christian Brodbeck, L. Elliot Hong & Jonathan Z. Simon University oMaryland

christianbrodbeck@me.com

Outline

Cocktail-party problem

Selectively listening to one of two talkers

Processing of ignored speech?

MEG response to competing speakers

- Participants listen to two competing audiobook segments.
- Continuous neural response model
- MEG responses modeled to determine whether features of the ignored speech are represented

Cocktail party problem

Acoustic scene

- Acoustic mixture (acoustic scene, representation in auditory nerve)
- Acoustic sources (speakers)

Cortical representations

- Early (~50 ms) acoustic mixture (Puvvada & Simon, 2017)
- Later (~100 ms) preferential processing of the attended speech source (Ding & Simon, 2012)

Is ignored speech separated from the mixture in auditory cortex?

Representation of ignored speech

Indirect evidence

- Your name may attract attention (Cherry, 1953)
- Background speech is more distracting than other noises (e.g. Brungart, 2001)
- But less so when you don't know the language in the background (Van Engen & Bradlow, 2007)
- Identity priming from unattended words (Rivenez et al., 2006)

Retrospective access to no more than one speaker (Kidd et al., 2005) Hard to distinguish consistent lexical processing from attention switches No time-locked lexical processing based on MEG (Brodbeck et al., 2018)

Paradigm

- Two speakers, equal loudness (female & male)
- Instructions: Attend to one, ignore the other
- Task: After each segment, answer a question about the content of the attended stimulus

Temporal response function (TRF)

Mathematically

• We model the response (r) as convolution (*) of the stimulus (s) with a response function (h):

$$r = s * h$$

I.e., each point in the response is a weighted sum of the stimulus preceding it:

$$h_t = \sum_{\tau} h_{\tau} \cdot s_{t-\tau}$$

 Stimulus and response are known, kernel is to be estimated

Spectro-temporal response function (STRF)

Amplitude in frequency bins Spectrogram

Multiple predictor variables

The measured response is the sum of the individual responses

Physiological motivation

- Neural sub-populations respond to different stimulus features
 - E.g. frequency tuning
- Electrical activity is locally additive

Spectro-temporal response function (STRF)

- Brain response to acoustic stimulus
- TRF can differ depending on the acoustic frequency

Single speaker

Acoustic onsets

- Acoustic edge detector model (Fishbach, Nelken, & Yeshurun, 2001)
- Relevant for auditory object perception

Single speaker

Significant prediction

ROI for TRF analysis

Acoustic onsets

- Acoustic edge detector model (Fishbach, Nelken, & Yeshurun, 2001)
- Source localization consistent with superior temporal Gyrus

Onsets

Envelope

Single speaker

Acoustic onsets

- Acoustic edge detector model (Fishbach, Nelken, & Yeshurun, 2001)
- Source localization consistent with superior temporal Gyrus
- Typical response pattern:
 - + peak
 - peak

Two speakers

Acoustic mixture

Potential representations

- Acoustic input (mixture)
- Recovered source signals
 - Attended source
 - Ignored source?

Significant responses

- Significant response to onsets in the ignored source
- After accounting for mixture and attended source

Э

Masked onsets

Masked onset

Overt onset

Intuition

- Sources are represented in addition to mixture
- The auditory cortex has to recover features in the source that are masked in the mixture

New predictors

- **Overt onsets:** Onsets in a source that are visible in the mixture
- Masked onsets: Onsets in a source that are masked in the mixture

\rightarrow New model

 Overtness (overt, masked) × Source (attended, ignored)

Masked onsets

+ peak: Overt > masked

– peak: Attended > ignored

Delayed response to masked onsets

- Delay not uniform as previously assumed (cf. Ding & Simon, 2013)
- Relation to conscious experience?

Summary

Increasing abstraction

- ▶ 74 ms: Bottom-up, stimulus-driven
- ▶ 93 ms: reconstructed onsets
- >120 ms: reconstructed onsets same amplitude as overt onsets
- Increasing selectivity for attended source

Representations of ignored speech could explain

- Why speech is more distracting than stationary noise
- Intrusions from ignored speech (cf. Brungart, 2001)
- Detection of over-learned words such as one's name (cf. Woods & McDermott, 2018)

Thank You!

Acknowledgements

Advisor

Jonathan Z. Simon

Experiment design

Krishna Puvvada

MEG data collection

Natalia Lapinskaya

Undergraduate students

- Alex Jiao
- Ross Baehr

Collaborator

L. Elliot Hong

Funding

- National Institutes of Health (R01-DC-014085 to J.Z.S.)
- University of Maryland Seed Grant (to L.E.H. and J.Z.S.)

