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Abstract

Estimating the latent dynamics underlying biological processes is a central problem in compu-

tational biology. State-space models with Gaussian statistics are widely used for estimation of

such latent dynamics and have been successfully utilized in the analysis of biological data.

Gaussian statistics, however, fail to capture several key features of the dynamics of biological

processes (e.g., brain dynamics) such as abrupt state changes and exogenous processes

that affect the states in a structured fashion. Although Gaussian mixture process noise mod-

els have been considered as an alternative to capture such effects, data-driven inference of

their parameters is not well-established in the literature. The objective of this paper is to

develop efficient algorithms for inferring the parameters of a general class of Gaussian mix-

ture process noise models from noisy and limited observations, and to utilize them in extract-

ing the neural dynamics that underlie auditory processing from magnetoencephalography

(MEG) data in a cocktail party setting. We develop an algorithm based on Expectation-Maxi-

mization to estimate the process noise parameters from state-space observations. We apply

our algorithm to simulated and experimentally-recorded MEG data from auditory experiments

in the cocktail party paradigm to estimate the underlying dynamic Temporal Response Func-

tions (TRFs). Our simulation results show that the richer representation of the process noise

as a Gaussian mixture significantly improves state estimation and capturing the heterogeneity

of the TRF dynamics. Application to MEG data reveals improvements over existing TRF

estimation techniques, and provides a reliable alternative to current approaches for probing

neural dynamics in a cocktail party scenario, as well as attention decoding in emerging appli-

cations such as smart hearing aids. Our proposed methodology provides a framework for effi-

cient inference of Gaussian mixture process noise models, with application to a wide range of

biological data with underlying heterogeneous and latent dynamics.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008172 August 19, 2020 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Miran S, Presacco A, Simon JZ, Fu MC,

Marcus SI, Babadi B (2020) Dynamic estimation of

auditory temporal response functions via state-

space models with Gaussian mixture process

noise. PLoS Comput Biol 16(8): e1008172. https://

doi.org/10.1371/journal.pcbi.1008172

Editor: Daniele Marinazzo, Ghent University,

BELGIUM

Received: February 14, 2020

Accepted: July 21, 2020

Published: August 19, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008172

Copyright: © 2020 Miran et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The experimental

data used in this paper are publicly available in the

Digital Repository at the University of Maryland at

http://hdl.handle.net/1903/26351 (at-will attention

http://orcid.org/0000-0003-4840-5739
http://orcid.org/0000-0003-0858-0698
http://orcid.org/0000-0003-2105-4932
http://orcid.org/0000-0002-4926-9567
http://orcid.org/0000-0002-9856-006X
https://doi.org/10.1371/journal.pcbi.1008172
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008172&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008172&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008172&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008172&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008172&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008172&domain=pdf&date_stamp=2020-09-11
https://doi.org/10.1371/journal.pcbi.1008172
https://doi.org/10.1371/journal.pcbi.1008172
https://doi.org/10.1371/journal.pcbi.1008172
http://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1903/26351


Author summary

While Gaussian statistics are widely-used in analyzing biological data, they are not able to

fully capture the observed heterogeneity and abrupt changes in the dynamics that govern

the underlying biological processes. A notable example of such a process is the ability of

the human brain to focus attention on one speaker among many in a cocktail party and

switch attention to any other at will. We propose a signal processing methodology to

extract the dynamics of such switching processes from noisy biological data in a robust

and computationally efficient manner, and apply them to experimentally-recoded magne-

toencephalography data from the human brain under cocktail party settings. Our results

provide new insight on the heterogeneous neural dynamics that govern auditory attention

switching. While our proposed methodology can be readily used as a reliable alternative

to existing approaches in studying auditory processing in the human brain, it is suitable to

be applied to a wide range of biological data with underlying heterogeneous dynamics.

Introduction

Extracting the latent dynamics that govern biological processes from noisy and limited mea-

surements is a long-standing challenge in computational biology. From the signal processing

perspective, state-space modeling is a natural and commonly-used framework for estimation

of such latent dynamic processes, i.e., the states, under limited observations [1]. While tradi-

tionally used in application domains such as control system design [2], tracking [3], and

finance [4], this framework has recently been utilized in the analysis of neural data [5–11].

State-space models (SSMs) often consist of two equations: the state (evolution) equation, to

describe the dynamics of the latent process (e.g., the intrinsic level of an internal neural state

variable), and the observation equation, to illustrate how the externally-measured observations

are related to the process. In signal processing applications, these equations are typically

described in a parametric fashion using domain-specific expert knowledge of the problem,

and parameter estimation is mostly performed via Expectation Maximization (EM) [12, 13] or

Variational Inference (VI) [14, 15]. To better model the state evolution, in addition to expected

measurement uncertainties, additive noise terms are often explicitly included in both the state

and observation equations. In traditional applications, i.i.d. Gaussian statistics are assumed/

imposed on these noise terms to account for the aggregate uncertainties and mismatches in

the model. Under linear dynamics and observations, Gaussian noise, and fixed model parame-

ters, Minimum Mean Square Error (MMSE) state estimation is conducted by the well-known

Kalman filter and smoother [1]. For more general SSMs, Sequential Monte Carlo (SMC) meth-

ods can be used for MMSE state estimation [16]. In the context of neuroimaging data analysis,

SMC methods have been utilized in MEG dipole modeling and source localization [7–9].

Gaussian statistics, however, are often inconsistent with the empirical histograms of the

observations in various applications, including neuroimaging data analysis. For instance, in

MEG analysis, the observation noise consists of intrinsic magnetic noise, ocular or motion-

induced artifacts, as well as background activity unrelated to the stimulus. While the intrinsic

noise can be reliably modeled by Gaussian statistics and estimated from stimulus-free mea-

surements in experimental settings, the artifacts and neural background activity are manifestly

non-Gaussian and non-stationary. However, when there is direct access to the observed sig-

nals, source separation techniques have been successfully utilized to remove and mitigate these

latter sources of uncertainty [17–22].
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Similarly, the state model noise terms introduced above, often referred to as process noise,

do not actually follow Gaussian statistics in various real-world applications [23, 24]. This is

mainly due to two reasons: First, in time series analysis, abrupt state changes may not be well

represented by Gaussian statistics. Second, in practice, the statistics of the process noise heavily

depend on the specifics of the experimental design, such as the task demand and subject’s per-

formance, as well as other exogenous variables not accounted for. Critically, unlike the case of

the observations, states are only indirectly observed, which limits the utility of source separa-

tion techniques. Finally, despite the negative connotation of the word “noise”, the process

noise also captures the model-critical stochasticity of the state evolution. As such, the goal is to

model and account for said stochasticity, as opposed to removing it as in the case of observa-

tion noise.

This issue is particularly important in modeling brain function as a latent dynamic process:

taking the states to represent the underlying neural circuits that process sensory stimuli, the

process noise then consists of both the underlying behaviorally- and stimulus-driven dynamics

as well as the background neural activity (not necessarily evoked by the stimulus or behavior),

which are typically quite structured and far from being Gaussian. In this context, the state evo-

lution model is more prone to model mismatch and biases, as compared to the observation

equation, considering that we generally have more control over the measurement system than

the generative mechanism governing the latent process. As a result, the empirical histogram of

the process noise (which can be computed from state estimates) could exhibit multimodal

morphology, with each mode corresponding to a different exogenous process driving the state

dynamics during specific portions of the experiment.

This has led researchers to study SSMs with a Gaussian Mixture (GM) process noise [25–

29] considering that a GM can, in principle, approximate any multimodal density [30]. These

existing results primarily focus on state estimation and approximation of filtering and smooth-

ing densities under a fixed or known GM noise density. As such, parameter estimation for a

GM process noise in SSMs has not been well-studied. Switching SSMs has been another direc-

tion of research in extending linear Gaussian SSMs to cope with nonstationarity, model mis-

match, and exogenous processes [15, 31–39]. In this approach, several linear Gaussian SSMs

are considered to underlie the observed time series data, which switch according to a Hidden

Markov Model (HMM). Although the filtering and smoothing densities in this model take a

GM form, the potential multimodality of the process noise is not explored or modeled in this

approach. In addition, parameter estimation for switching SSMs is a challenging task in gen-

eral, due to the intricate dependence of the data likelihood on the parameters. When the states

are directly observable, the resulting models are known as Markov-switching Autoregressive

(MSAR) models, which notably admit parameter estimation via the EM algorithm [32, 40].

However, for general switching SSMs, parameter estimation often requires computationally

intensive numerical optimization steps [33, 35, 36].

In this work, we fill this gap by developing an EM-based algorithm for estimating the

parameters of a GM process noise model from the observations in an SSM. In our model, the

process noise is not drawn i.i.d. from a GM but instead, a GM component is chosen at random

for a window of fixed (but arbitrary) length, and the process noise within the window is drawn

from said component. The parameters of the GM are unknown. The EM algorithm has been

widely used for parameter estimation both in state-space modeling [13] and in GM clustering

[41], which makes it a promising candidate for our setting. The EM framework in this setting,

however, results in intractable expectations for parameter updates. We address this issue by

leveraging a Sequential Monte Carlo Expectation Maximization (SMCEM)-type algorithm

[42] to approximate the expectations using smoothed particles obtained through SMC. A

major drawback of particle smoothing approaches is their excessive computational
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requirements, or equivalently suffering from sample depletion as the dimension of the target

densities grows while fixing the computational costs [43]. As a more scalable alternative, we

develop another method of approximating the expectations based on closed-form approxima-

tions to the smoothing densities as well as their one-step cross covariances. To this end, we

adopt the two-filter formula for smoothing [26] and devise a belief propagation algorithm in

our setting. As a result, the computational complexity of the E-step in EM for a GM process

noise would be comparable to that of a conventional Gaussian process noise, akin to perform-

ing parallel Kalman filtering and smoothing.

To demonstrate the benefits of a GM process noise and the efficacy of the developed esti-

mation framework, we consider two experimental paradigms: a dynamic at-will attention

switching task in a realistic cocktail party scenario, in which the listener maintains attention

to one out of two competing speakers, while being able to switch attention between the two

speech streams at will; and an instructed attention switching task in a more restricted cock-

tail party scenario, in which the listener maintains attention to one out of two competing

speakers for the first half of a trial and then switches attention to the other speaker. The

cocktail party is among the key paradigms in studying the neural dynamics underlying com-

plex auditory processing [44, 45]. One of the most recent quantitative approaches in uncov-

ering these neural dynamics from neuroimaging data is based on the Temporal Response

Function (TRF) model [46]. The TRF can be considered as an evolving Finite Impulse

Response (FIR) filter which gets convolved with speech features in time, e.g., the speech

envelope, to produce the auditory neural response observed through neuroimaging modali-

ties such as electroencephalography (EEG) and magnetoencephalography (MEG) [47]. The

TRF framework has resulted in new insights into the mechanisms of speech processing in

the brain in the cocktail party scenario [45, 48–50]. For instance, TRF components at spe-

cific lags may exhibit peaks which arise, persist, and disappear over time according to the

attentional state of the listener [51]. The different local dynamics of TRF components under

each of these conditions motivates a GM density to capture such evolution patterns.

Dynamic estimation of TRFs was first discussed in [47] using a Recursive Least Square

(RLS) algorithm. However, smoothing estimates and state-space modeling are more robust

than RLS and filtering estimates in performing a comprehensive dynamic analysis of TRFs

when data from multiple trials is available. Thus, we study dynamic estimation of TRFs

using SSMs and apply our SSM framework with a GM process noise to both simulated and

experimentally recorded MEG data under a dual-speaker environment where the subject

switches attention between the two speakers at will. The results show that our proposed algo-

rithm can effectively recover the multimodal structure of the process noise from SSM obser-

vations, and that having a richer and more realistic representation of the process noise

allows capturing the TRF dynamics more precisely and more consistent with the subjects’

behavioral reports, as compared to the conventional Gaussian SSM or RLS estimation.

While our proposed framework is motivated by and applied to data from auditory experi-

ments, it is applicable to general state-space modeling problems in which states exhibit het-

erogeneous and recurring local dynamic patterns.

Results

In this section, we demonstrate the utility of our proposed algorithms in estimating TRFs from

auditory neural responses to speech, using both simulated and experimentally-recorded MEG

data. Before doing so, we will give an overview of the TRF model, existing estimation frame-

works, and the benefits of our GM SSM framework for TRF estimation.
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The TRF model

Consider a cocktail party setting [45], in which a subject is listening to two speakers simulta-

neously, but only attending to one of the speakers. While the subject is performing this task,

the neural response is recorded using MEG. The TRF is a commonly used linear encoding

model that relates the speech features to the neural response, by generalizing the concept of

event-related evoked responses: instead of averaging over multiple trials with the same stimu-

lus to obtain the evoked response, the TRF kernel is obtained by averaging the effect of a

diverse set of speech stimuli, presented as a continuous time series, and hence results in a gen-

eralizable encoding model (See Fig 1 for a schematic depiction). The speech features used in

TRF models have included the acoustic envelope, acoustic onsets, phoneme representations,

word frequency measures, and semantic composition [52–54]. In a multi-speaker scenario,

multiple TRFs are used to capture the effect of the speech features of each speaker to the neural

response.

Existing results in auditory neuroscience [11, 46–48, 51, 55] have focused on studying the

behavioral significance of the various peaks in the TRF. For instance, the TRF exhibits an early

positive peak at around 50 ms, referred to as the M50 component, which is known to represent

the encoding of the acoustic envelope. A later negative peak at around 100 ms lag, referred to

as the M100 component, has shown to have an attentional modulation effect, so that it appears

to have a larger magnitude for the attended speaker’s TRF, compared to the unattended speak-

er’s TRF. The M50 component is attributed to the effect of early auditory processing in the

brain and is equally represented in both speakers’ TRFs, while the M100 component represents

the later processing stages that segregate the attended speaker from the unattended one [48].

TRFs are commonly assumed to be static during the duration of an auditory experiment,

and are estimated using regularized least squares [56, 57] or boosting [46, 48, 58]. Dynamic

estimation of the TRFs, on the other hand, can provide insights into the underlying neural

dynamics that process speech in the cocktail party setting, and has significant implications for

the design of non-invasive brain-machine interface devices involving auditory processing,

such as the emerging ‘smart’ hearing aid technology that utilizes neural signals to steer the

hearing aid parameters in real-time.

Dynamic estimation of TRFs was first discussed using a regularized RLS framework in [47].

This method considers changes in the TRFs over consecutive non-overlapping time windows

Fig 1. Schematic depiction of the TRF model. The speech features (left, e.g., acoustic envelope) are convolved with the TRF (top) to predict the

auditory neural response (right).

https://doi.org/10.1371/journal.pcbi.1008172.g001
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of small length, and updates the estimates of the TRFs in a recursive fashion as more data

becomes available (See Methods for more details). As such, it provides filtered estimates of the

TRFs and is suited for real-time applications.

Leveraging SSMs for representation and estimation of the TRFs has the advantage of pro-

viding smoothed estimates and directly modeling the evolution of the TRFs through the state

equation, and thereby resulting in a more precise dynamic analysis of the TRFs in the off-line

fashion. In this work, we consider linear Gaussian SSMs and linear SSMs with GM process

noise. As we will demonstrate in the following two subsections, the linear SSMs with GM pro-

cess noise have the additional advantage of accounting for the heterogeneity of the TRF

dynamics.

In what follows, we consider regularized RLS estimates of the TRF, estimates of the TRF

using a Markov Switching Autoregressive (MSAR) model, and smoothed TRF estimates from

a linear Gaussian SSM as benchmarks (See Methods for more details on these algorithms).

Application to simulated data

Consider a 90 s long cocktail party experiment, in which the subject is listening to two speakers

simultaneously and is instructed to switch attention between the two every 15 s starting at time

7.5 s. We synthesize the putative TRF dynamics as shown in Fig 2A, based on the relevance of

different TRF peaks. We use a sampling rate of Fs = 100 Hz and a length of 250 ms for the

TRFs. The TRFs are represented using a dictionary with five Gaussian atoms with variances of

0.018 s2 whose means are separated by 50 ms increments starting from a lag of 0 ms to 200 ms.

Furthermore, we consider a piecewise-constant model for the TRFs over windows of length

300 ms. Letting ~G be the dictionary, the TRF at the nth window is defined as τn ¼ ~Gxn,
where xn is the state vector at window n. The SSM governing the state evolution is of the form

xn = α xn−1 + wn, where α< 1 is a constant and wn is the process noise. Finally, the observed

neural response is related to the states by yn ¼ S>n τn þ vn, where Sn are the speech features of

the two speakers relevant to window n and vn is the i.i.d. Gaussian observation noise, i.e.,

vn � N ð0; s2IÞ (See Methods for more details on the TRF and state-space models).

Fig 2A shows the synthesized TRF heatmaps for speakers 1 and 2, where the corresponding

states are designed such that the M50 component stays relatively constant for the two speakers,

the M100 component is modulated by the attentional state, and a common high-latency com-

ponent at 200 ms varies independently of the subject’s attention. Fig 2B shows two snapshots

of the TRF of speaker 2 at 10 s, when speaker 2 is attended, and at 85 s, when speaker 1 is

attended. It is worth noting that the corresponding states in Fig 2A are not generated from an

SSM. However, the relatively smooth temporal changes of the TRFs in Fig 2A (representing

neural activity in controlled experimental conditions) makes the SSM model a suitable candi-

date for dynamic TRF analysis. Indeed, the TRF components at lags of 100 ms and 200 ms

exhibit heterogeneous dynamics across the trial, including periods of increasing, decreasing,

and remaining relatively constant, which model the changes in auditory state throughout the

experiment. Such dynamics can be modeled using a multimodal process noise wn. Fig 2C

shows the histogram of true wn samples along with the 3rd state dimension of speaker 2’s TRF

(corresponding to the M100 component). The true process noise samples are computed as

ŵn ¼ xn � axn� 1, assuming that the true states (xn’s) in Fig 2A are available to an oracle. We

refer to this histogram as the oracle histogram and to the maximum-likelihood GM density fit

to these oracle samples as the oracle GM fit in Fig 2C. The constant α is chosen close to and

less than one to enforce temporal continuity. We assume that the TRF dynamics are governed

by one mixture component in each window of length 1.5 s. We simulate the observed neural
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Fig 2. Designed simulation study: A) Heatmaps of the synthetic TRFs in time for a two-speaker cocktail party scenario,

where the M100 magnitudes are attention-modulated. B) Example instances of speaker 2’s TRF when the speaker is

attended (left plane) and unattended (right plane). C) Oracle histogram of process noise in (14) along the M100 dimension

of speaker 2, which is computed from (A), and the fitted GM as the oracle GM fit.

https://doi.org/10.1371/journal.pcbi.1008172.g002
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response yt using two speech signal envelopes as the stimulus vectors (See Methods for more

details on the parameter settings).

Fig 3 shows the convergence of the estimated parameters using the proposed EM algorithm

in comparison to those given by the oracle GM fit for a nominal observation SNR of 6.7 dB,

using the closed-form approximation approach. The number of mixture components is chosen

as 5 using the Akaike Information Criterion (AIC). The observation noise variance σ2 is also

Fig 3. Convergence of Gaussian mixture parameters for M = 5 in the EM algorithm with closed-form approximations: A) Mixture probabilities. B)

Mixture means (along the M100 component of speaker 2 as an example). C) Mixture variances (along the M100 component of speaker 2 as an

example). Bold dash lines show the corresponding parameters of the oracle GM fit. D) GM densities (along the M100 component of speaker 2 as an

example).

https://doi.org/10.1371/journal.pcbi.1008172.g003
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estimated within the EM algorithm. The panels for the means and diagonal covariances in Fig

3 correspond to the 3rd state dimension of speaker 2’s TRF (i.e., the M100 component) from

Fig 2C. The mixture probabilities and means of the oracle GM fit are recovered within 30 EM

iterations. The covariance elements, however, take more iterations to converge and tend to

underestimate those of the oracle GM fit. This shows that at the nominal SNR of 6.7 dB in our

simulation, the algorithm is more sensitive to recovering the average TRF dynamics in each

1.5 s window than to retrieving the detailed variations within the window.

It is noteworthy that the initialization points in Fig 3C, given by the estimated process noise

variance in a Gaussian SSM, are approximately 100 times larger than those given by the oracle

GM fit. Fig 3D shows the corresponding estimated process noise density after 200 EM itera-

tions (blue trace), the oracle GM fit (red trace), and the Gaussian model fit obtained from a lin-

ear Gaussian SSM used for EM initialization (yellow trace). While the estimated GM process

noise density using our proposed approach closely matches that given by the oracle GM fit, the

process noise density obtained by a linear Gaussian model is heavily biased and is not able to

capture the multimodal nature of the process. Note that while Fig 2C alludes to a true density

with 3 GM components, the AIC criterion chose 5 GM components. Nevertheless, the joint

updating of the means, variances, and mixture components (Fig 3A, 3B and 3C) results in a

final density estimate that matches the putative true density with 3 GM components (Fig 3D).

As such, our algorithm exhibits robustness to overestimation of the number of mixture

components.

To ease reproducibility, we have archived a MATLAB implementation of the closed-form

approximation method in the GitHub repository, which reproduces the results of Fig 3 [59].

Convergence curves for the Monte Carlo approximation method are previously presented in

[60], and are omitted here for brevity.

Fig 4 shows the normalized RMSE in state estimation with respect to the original states in

Fig 2A for nominal observation SNRs in the range [-5.3, 9.7] dB with 3 dB increments. The

results are averaged over 10 realizations at each SNR value. The SSMs clearly outperform the

RLS and MSAR algorithms in recovering the true states. Also, the SSM with GM process noise

with either the closed-form or particle smoothing approximations outperforms the Gaussian

SSM. We have considered a total of 2000 particles for the particle smoothing algorithm

(Approach 1) so that state estimates are comparable to those obtained by the closed-form

approximation (Approach 2). This resulted in a ten-fold increase in the run-time compared to

the closed-form approximation method (61.50 seconds and 5.57 seconds for Approaches 1

and 2, respectively, per EM iteration, on a typical desktop workstation for the settings used in

the simulation), which shows the advantage of using the closed-form approximation method.

Examples of the estimated TRFs of speaker 1 under the low nominal observation SNR of -5.3

dB are shown in Fig 5. The MSAR (panel B) and RLS estimates (panel C) exhibit the highest

variability compared to the ground truth in Fig 5A (imported from Fig 2A). While the Gauss-

ian SSM estimate in Fig 5D fails to capture the rapid M100 dynamics as well as the steady M50

component (note the M50 and M100 estimates within the dashed rectangles), the estimate

from the SSM with GM process noise in Fig 5E is nearly indistinguishable from the ground

truth TRF in Fig 5A.

Application to experimentally-recorded MEG data

We present the analysis of data from two separate attention switching experiments, which we

refer to as the at-will and instructed attention switching experiments. In the at-will attention

switching experiment, subjects listened to a speech mixture, and were instructed to start

attending to the male speaker first, and then to switch their attention between the two speakers
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at their own will for a minimum of one and a maximum of three times during each trial. In the

instructed attention switching experiments, the subjects listened to a speech mixture, and were

instructed to start attending to one speaker first and then to switch their attention to the other

speaker halfway through the trial. The instructed attention switching experiment consists of

data from 7 subjects, with 6 trials each, while the data from the at-will attention switching

experiment pertains to 3 trials of one subject (See Subjects, Stimuli, and Procedures subsection

in the Methods for more details). Although reliable group-level conclusions for the challenging

at-will attention switching experiment require data from more subjects and trials, given the

novelty of this experimental paradigm and its potential interest to the auditory attention

decoding research community, we have included the analysis of data from this one subject,

separately from the instructed attention switching data. In addition, a GM process noise in

SSMs would be more beneficial in at-will attention switching experiments, as it can capture

the rapid dynamics that underlie attention switching instances more reliably.

Fig 4. Averaged normalized RMSE in state estimation computed over 10 runs of observation noise at each SNR value

for dynamic TRF estimation algorithms, namely, MSAR, regularized RLS, linear Gaussian SSM, and linear SSM with

GM process noise using closed-form and Monte Carlo particle smoothing approximations. States and noise

parameters are both estimated simultaneously from the observations in each run.

https://doi.org/10.1371/journal.pcbi.1008172.g004
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Fig 5. Example dynamic TRF estimates for speaker 1 under the low nominal observation SNR of −5.3 dB: A) The

ground truth TRF. B) MSAR. C) Regularized RLS. D) Linear Gaussian SSM. E) Linear SSM with GM process noise.

The dashed rectangles highlight an example difference of these estimates for the sake of comparison.

https://doi.org/10.1371/journal.pcbi.1008172.g005
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TRF estimation results and discussion. We set the TRF length to 300 ms and consider

TRFs to be piece-wise constant over windows of length 400 ms. Also, we assume that the TRF

dynamics are governed by one mixture component in each window of length 2 s. As before,

we represent the TRFs over a Gaussian dictionary with means separated by 20 ms starting

from 0 to 280 ms, and variances of 8.5 × 10−3 s2. To restrict the dynamic range of the process

noise wn for the sake of robustness, we consider Inverse Gamma (IG) conjugate priors [61] on

the diagonal elements of the process noise covariance matrices. Note that in the absence of

such priors, the EM algorithm would likely result in TRFs that are highly variable in time and

with no meaningful morphological structure (See Methods for more details on parameter

settings).

Fig 6 shows example TRF estimates for two trials of the subject in the at-will attention

switching experiment. The vertical dashed lines mark reported attention switches by the sub-

ject. For the sake of brevity, hereafter we only present TRF estimates based on the RLS, Linear

Gaussian SSM and Linear SSM with GM process noise. The number of mixture components

for the process noise was set to 3 for trial 1 and 4 for trial 2, using the AIC criterion. Row A

shows speaker 1’s TRF estimate using RLS, which exhibits the highest variability. Rows B and

C show the TRF for the Gaussian SSM and the SSM with GM process noise, inferred using the

closed-form approximation, respectively. Although the estimated process noise variance in the

GM case is controlled by that of the Gaussian case in each dimension, we observe that the esti-

mates in row C clearly delineate the heterogeneity of the dynamics of the various TRF compo-

nents, which are blurred by the linear Gaussian SSM estimates of row B. In other words, the

multimodal representation of the process noise allows the model to adapt to rapid changes

governed by the subjects’ behavior. Row D displays speaker 2’s TRF estimate using the linear

SSM with GM process noise. Comparing rows C and D, we observe the aforementioned atten-

tion modulation effect in the magnitude of the M100 components. To illustrate this effect fur-

ther, row E shows the difference between the M100 magnitudes of the TRFs of speakers 1 and

2, where we locate the M100 at each time as the smallest TRF elements in the [0.1, 0.2] s lag

interval. Thus, when speaker 1 (2) is attended, we expect this difference to be positive (nega-

tive). The attention decoding accuracy in each trial can be computed by comparing the differ-

ence of the M100 magnitudes with level 0 at each time (horizontal dashed line in Fig 6E)

considering the reported attended speaker and summing over all the intervals where the M100

of the attended speaker exhibits a larger magnitude than that of the unattended speaker. Note

that this decoding strategy is purely based on the TRF estimates in a single trial. As such, it

would not be as accurate as the state-of-the-art attention decoding methods that use more

complex algorithms and extensive training data. The M100 differences for the RLS exhibit

high variability (blue traces), and result in inconsistencies with the reported attended speakers

(e.g., trial 1 after the 35 s mark, downward arrow). The M100 differences obtained by the linear

Gaussian SSM estimates seem to overly smooth those of the RLS (e.g., trial 2, near the 10 s

mark, downward arrow). The M100 differences obtained from the proposed linear SSM with

GM process noise, however, provide a desirable compromise between these two extremes:

Compared to the linear Gaussian SSM, the M100 differences benefit from the clearly delin-

eated TRF dynamics and can result in earlier detection of an attention switch, leading to higher

attention decoding accuracy. Instances of this advantage are marked by green arrows in row E,

for both trials. Decoding the attention based on the sign of the M100 differences results in mis-

classification rates of (6.74%, 12.37%, 22.94%) for trial 1 and (31.72%, 43.08%, 39.03%) for trial

2, respectively for the SSM with GM process noise, Gaussian SSM, and RLS, in accordance

with the foregoing qualitative analysis.

Fig 7 displays example TRF estimates for two trials in the instructed attention switching

experiment, in a similar fashion as Fig 6. The subjects were instructed to switch their attention
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at the 30 s mark, halfway through the trial. Again, we observe that the SSM with GM process

noise emphasizes the detailed dynamics of the TRFs which are sometimes blurred out in the

Gaussian SSM or shown with high variability in the filtering estimates of RLS. This can result

in stronger attention modulation effects, i.e., larger magnitude for the M100 of the attended

speaker, or quicker transitions at the 30 s attention switching mark (marked by green arrows).

The misclassification rates for SSM with GM process noise, Gaussian SSM, and RLS are

respectively (25.78%, 26.81%, 31.45%) for trial 1 and (8.55%, 9.8%, 17.01%) for trial 2.

Fig 8 shows the group-level analysis results for the subject in the at-will attention switching

experiment (left column) and the seven subjects in the instructed attention switching experi-

ment (right column). The upper panels display the scatter and box plots for the computed

attention decoding accuracies for the at-will and instructed attention switching experiments,

Fig 6. TRF estimates for two example trials in the at-will attention switching experiment with vertical dashed lines showing the reported times of

attention switches by the subject: A) RLS estimate (speaker 1 TRF). B) Gaussian SSM (speaker 1 TRF). C) SSM with GM process noise (speaker 1 TRF).

D) SSM with GM process noise (speaker 2 TRF). E) M100 magnitude differences between the TRFs of speaker 1 and 2 for the different methods. The

SSM with GM process noise better delineates the heterogeneity of the TRF dynamics and is more consistent with the subjects’ behavioral reports (see

green arrows), while the RLS estimate is highly variable and the estimate of the Gaussian SSM is overly smooth.

https://doi.org/10.1371/journal.pcbi.1008172.g006
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respectively. With respect to the mean attention decoding accuracy (red plus sign), RLS esti-

mates exhibit the poorest performance, and SSM with GM process noise results in a modest

1% to 3% improvement over the linear Gaussian SSM. The attention decoding accuracy, how-

ever, is not an ideal metric to assess the TRF estimation performance, due to the absence of a

ground truth and arbitrary attentional variabilities during a single trial. The lower panels in

Fig 8 summarize the results of the AIC model selection criterion for number of components in

the GM process noise density. For each trial, we considered one to four GM components for

the process noise, and the number with the lowest AIC score was chosen for the SSM with GM

process noise in that trial. If one GM component is chosen based on the AIC criterion, the

SSM with GM process noise reduces to the linear Gaussian SSM. The lower panels in Fig 8

show the normalized histogram of the chosen number of GM components across subjects and

Fig 7. TRF estimates for two example trials in the instructed attention switching experiment with vertical dashed lines showing the 30 s mark where

subjects were instructed to switch their attentional focus: A) RLS estimate (speaker 1 TRF). B) Gaussian SSM (speaker 1 TRF). C) SSM with GM process

noise (speaker 1 TRF). D) SSM with GM process noise (speaker 2 TRF). E) M100 magnitude differences between the TRFs of speaker 1 and 2 for the

different methods. The SSM with GM process noise better delineates the heterogeneity of the TRF dynamics and is more consistent with the subjects’

behavioral reports (see green arrows), while the RLS estimate is highly variable and the estimate of the Gaussian SSM is overly smooth.

https://doi.org/10.1371/journal.pcbi.1008172.g007
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Fig 8. Group-level results for attention decoding accuracy (upper panels) and the AIC model selection criteria (lower

panels) for the at-will (left column) and the instructed (right column) attention decoding experiments. The upper

panels display the scatter/box plots of trial-level mean attention decoding accuracy across subjects and trials, while the

lower panels show the normalized histogram of the chosen number of GM components in each trial. The mean

attention decoding accuracies, marked by red plus signs in upper panels, are (75.31%, 72.04%, 66.45%) and (63.24%,

62.74%, 60.28%) for (SSM with GM process noise, Gaussian SSM, RLS) in the at-will and instructed attention switching

experiments, respectively. Although the SSM with GM process noise results in modest improvements in mean

attention decoding accuracy compared to the linear Gaussian SSM, the AIC model selection criteria always prefers the

former to the latter.

https://doi.org/10.1371/journal.pcbi.1008172.g008
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trials. It is worth noting that for the trials where four components were chosen, it is possible

that a higher number of process noise GM components would have resulted in a lower AIC

score. We observe that in none of the trials (out of 45) a linear Gaussian SSM is preferred over

an SSM with GM process noise. This suggests that even when accounting for model complex-

ity, the SSM with GM process noise fits the observed MEG data better than a linear Gaussian

SSM, and can thus serve as a better explanatory model for the underlying biological processes.

Discussion

We considered the problem of estimating latent dynamics of biological processes from noisy

and limited observations, in which the commonly-used Gaussian statistics fail to capture the

heterogeneous and switching nature of the dynamics. An instance of such dynamics are the

neural processes that underlie auditory attention switching in a cocktail party consisting of

multiple speakers. To address this shortcoming of Gaussian models, we utilized a SSM with

GM process noise and devised an EM algorithm to estimate the parameters of the GM density

from SSM observations. To approximate the intractable expectations in EM, we considered

two approaches, one based on particle smoothing and another based on closed-form GM

approximations to the smoothing densities.

The main limitation of the first approach based on particle smoothing is the exponential

growth of the number of particles in terms of the dimension of the smoothing densities. The

second approach based on closed-form GM approximations significantly reduces the compu-

tational complexity by requiring a cubic dependence in the state dimensions, with an addi-

tional cubic dependence in the number of GM mixtures. In addition, the closed-form

approximations require a linear SSM model to hold. If the underlying state-space model is

indeed non-linear, linearization techniques such as those used in the extended [1] or

unscented Kalman filter [62] are required, which may result in model mismatch.

While both the observation and process noise are often non-Gaussian in practice, in our

proposed framework, we have assumed Gaussian statistics to model the observation noise.

This is motivated by the conventional preprocessing techniques applied to the observed data

(e.g., source separation), which are able to remove the non-Gaussian noise components in

such a way that the resulting ‘denoised’ observations admit Gaussian noise models. Neverthe-

less, the observation noise can also be modeled by a GM density, whose parameters can be esti-

mated in a similar fashion to those of the process noise in our proposed framework. The

resulting inference algorithm, however, would be more intricate and is deemed as a future

extension of our current methodology.

As mentioned in the Introduction, existing parameter estimation techniques for general

switching SSMs are computationally demanding and often require direct maximization of the

data likelihood via numerical methods. The MSAR method presented here circumvents this

challenge by using a surrogate of the states to perform parameter estimation. It is noteworthy

that our SSM with GM process noise can be thought of as a special case of an SSM with under-

lying MSAR state dynamics, in which the state transition probability matrix is constrained to

have equal rows. Thus, another potential extension of our proposed methodology is to utilize

the closed-form approximation approach for estimating the parameters of more general

switching SSMs in a computationally scalable fashion.

As our primary application, we considered the problem of dynamic TRF estimation from

auditory neural responses to speech. We formulated the problem as a linear SSM with Gauss-

ian or GM process noise, and compared the TRF estimates to those obtained by the RLS and

MSAR algorithms. Application to simulated data shows that the algorithm can effectively

recover the parameters of the underlying GM process noise and that the GM representation
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improves state estimation for a synthesized latent process exhibiting heterogeneous and rapid

dynamics. Application to experimentally-recorded MEG from both at-will and instructed

attention switching two-speaker cocktail party settings revealed that the proposed SSM with

GM process noise model and inference methodology clearly delineates the heterogeneous

dynamics of the TRF components that are otherwise not captured by the other techniques.

While the proposed methodology can be used as a reliable estimation technique for auditory

attention decoding in a cocktail party settings, it can be applied to a wider range of biological

problems in which the underlying model exhibits heterogeneous and switching dynamics.

Methods

Ethics statement

All experimental protocols and procedures were approved by the University of Maryland Insti-

tutional Review Board, and written informed consent was obtained from participants before

the experiments.

The main problem formulation

Consider the following generic discrete-time SSM with additive noise:

xn ¼ fnðxn� 1Þ þ wn

yn ¼ gnðxnÞ þ vn

(

ð1Þ

where xn 2 R
dx and yn 2 R

dy represent the states and the observations at time n, respectively.

We assume that the functional forms of fn(.) and gn(.) are known and fixed for n = 1, . . ., N,

from domain-specific knowledge of the problem. Following our arguments in the Introduction

on the utility of source separation techniques in removing the non-Gaussian components of

the observation noise, we let vn � N ð0;RÞ be the i.i.d. Gaussian sequence of observation

noise. The process noise wn, on the other hand, accounts for the stochasticity of the state evolu-

tion. Note that from a neuroscience perspective, the process noise consists of both the underly-

ing behaviorally- and stimulus-driven dynamics as well as the background neural activity (not

necessarily evoked by the stimulus or behavior). While the terminology alludes to a zero-mean

Gaussian disturbance, the process noise in this context is typically quite structured and far

from being a zero-mean Gaussian disturbance. Nevertheless, we adhere to this terminology for

the sake of consistency with existing literature on state estimation.

To represent the process noise wn, consider a GM with M mixture components and param-

eter set Θ≔ {p1:M, μ1:M, S1:M} containing the mixture probabilities p1:M, mean vectors μ1:M,

and covariance matrices S1:M. We model the state dynamics over K≔ N/W consecutive non-

overlapping windows of length W. Within each window i 2 {1, . . ., K}, the process noise is

drawn from one of the mixture components, which we denote by zi 2 {1, . . ., M}. Therefore,

we have wn � N ðμzi ;Szi
Þ for n = (i − 1)W + 1, . . ., iW, independent of vn, and we consider the

zi’s to be i.i.d. with P(zi = m) = pm for m = 1, . . ., M. In other words, zi determines the active

mixture component that governs the state dynamics in window i. This can also be interpreted

as a switching Gaussian process noise. For the special case of W = 1, the resulting model could

in principle approximate any arbitrary i.i.d. process noise wn, as it is fitting a GM model to the

process noise. In this case, the labels zi of mixture components can vary at the same rate as that

of the states and observations. Note that regardless of the choice of W, wn has a GM distribu-

tion, but is only i.i.d. when W = 1. We hereafter refer to the foregoing process noise model, for

general W� 1, as the GM process noise model.
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Let YN
1

denote the set of observations from 1 to N, i.e., y1:N, and similarly define XN
1

and ZK
1

for x1:N and z1:K, respectively. Our goal is to estimate the GM process noise parameters Θ from

SSM observations YN
1

. As estimation of the observation noise covariance R in EM is straight-

forward [13], we assume R to be fixed for convenience and will briefly review the update equa-

tions for R in the following subsection, if it needs to be estimated from the observed data. As

mentioned in the Introduction, R can also be estimated from stimulus-free conditions. Finally,

we adopt the Maximum Likelihood (ML) estimation framework to estimate Θ as follows:

Ŷ
ML

:¼ arg max
Y

PðYN
1
jYÞ: ð2Þ

Despite its simple statement, the problem of Eq (2) is challenging due to the difficulties in

computing the optimization argument, i.e., data likelihood, in a computationally scalable fash-

ion. We will address this challenge in the forthcoming section.

Parameter estimation

We use the EM algorithm as a solution method for the ML problem in (2). The EM framework

provides an iterative procedure to update the estimated parameter set with the guarantee that

at iteration (ℓ + 1) we have

PðYN
1
j Ŷð‘þ1ÞÞ � PðYN

1
j Ŷð‘ÞÞ ð3Þ

where Ŷð‘Þ is the parameter set estimate from the ℓth iteration [12]. The EM algorithm guaran-

tees convergence to a local maximum, and most of the work on escaping the undesirable local

maxima in EM theory have focused on providing an informed initialization of the algorithm

[63, 64]. As explained in the Model Parameter Settings subsection of the Methods, we use the

fixed-interval smoothed estimates based on a Gaussian model to choose Ŷð0Þ and initialize the

algorithm.

Let H ¼ fZK
1
;XN

1
g denote the set of latent variables in the SSM, which includes the states

and the labels of active mixture component in each window. The EM algorithm performs the

following two steps at the (ℓ + 1)th iteration and repeats them until convergence to a parameter

estimate Ŷ:

E‐step : QðY j Ŷð‘ÞÞ ¼ EHf log PðYN
1
;H jYÞ j YN

1
; Ŷð‘Þg

M‐step : Ŷð‘þ1Þ ¼ arg max
Y
QðY j Ŷð‘ÞÞ

8
<

:
ð4Þ

where the surrogate function QðY j Ŷð‘ÞÞ is a lower bound on the data log-likelihood. The

expectation in the E-step is over the conditional density of H j YN
1
; Ŷð‘Þ. As all of the following

expectations are also conditioned on YN
1

and Ŷð‘Þ, we drop the conditioning in the notation

for convenience, but keep the expectation subscript to denote the random variable with respect

to which the expectation is taken. Also, hereafter the subscript (i, j) represents the time index

of the jth sample in the ith window, i.e., n = (i − 1)W + j for brevity. The EM algorithm in Eq

(4) in our setting can be expressed as follows:

E-step: The surrogate function in the SSM is computed as

QðY j Ŷð‘ÞÞ ¼ EHf log PðZK
1
jYÞ þ log PðXN

1
j ZK

1
;YÞg þ c1

¼
XK

i¼1

XM

m¼1

EH 1fzi¼mgð log pm þ
XW

j¼1

logpði;jÞ;mÞ

( )

þ c2;
ð5Þ
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where 1f:g denotes the indicator function, c1 and c2 are terms not dependent on Θ, and π(i, j), m

is defined as

pði;jÞ;m :¼ Pðxði;jÞ j xði;j� 1Þ; zi ¼ m;YÞ; ð6Þ

which is computed based on the Gaussian density for w(i, j) in Eq (1) when zi = m. If we decom-

pose the conditional expectation in Eq (5) into two iterated conditional expectations with

respect to XN
1
j YN

1
; Ŷð‘Þ and ZK

1
j XN

1
; Ŷð‘Þ (where YN

1
is dropped in the latter due to condi-

tional independence), this equation can be written as

QðY j Ŷð‘ÞÞ ¼
XK

i¼1

XM

m¼1

EXf�̂
ð‘Þ

i;mð log pm þ
XW

j¼1

logpði;jÞ;mÞg þ c3; ð7Þ

where c3 is a constant and �̂
ð‘Þ

i;m is the membership probability and can be expressed using

Bayes’ rule as:

�̂
ð‘Þ

i;m :¼ P zi ¼ m j XN
1
; Ŷð‘Þ

� �
¼

p̂ð‘Þm
QW

j¼1
p̂
ð‘Þ

ði;jÞ;m
PM

m0¼1
p̂ð‘Þm0
QW

j¼1
p̂
ð‘Þ

ði;jÞ;m0
; ð8Þ

The variable p̂
ð‘Þ

ði;jÞ;m is defined similarly to (6) but forY ¼ Ŷð‘Þ, which makes �̂
ð‘Þ

i;m a constant

with respect to Θ.

M-step: In this step, we maximize the log-likelihood lower bound with respect to Θ. Differ-

entiating (7) with respect to Θ, enforcing the condition
PM

m¼1
pm ¼ 1, and invoking the domi-

nated convergence theorem to change the order of expectation and differentiation, we obtain

the following parameter updates for m = 1, . . ., M:

p̂ð‘þ1Þ
m ¼

1

K

XK

i¼1

EXf�̂
ð‘Þ

i;mg; μ̂ð‘þ1Þ

m ¼

XK

i¼1

EX �̂
ð‘Þ

i;m

XW

j¼1

vði;jÞ

( )

W
XK

i¼1

EXf�̂
ð‘Þ

i;mg

; ð9Þ

Ŝð‘þ1Þ
m ¼

XK

i¼1

EX �̂
ð‘Þ

i;m

XW

j¼1

vði;jÞv>ði;jÞ

( )

W
XK

i¼1

EXf�̂
ð‘Þ

i;mg

� μ̂ð‘þ1Þ

m ðμ̂ð‘þ1Þ

m Þ
>
; ð10Þ

where v(i, j) ≔ x(i, j) − f(i, j)(x(i, j−1)).

Remark 1. If the covariance matrix R of the Gaussian observation noise in (1) also needs to

be estimated from YN
1

, it can be included in the parameter set Θ. The update formula for R̂ð‘þ1Þ

in the EM framework then becomes [65]

R̂ð‘þ1Þ ¼
1

N

XN

n¼1

EXf yn � gnðxnÞ
� �

ðyn � gnðxnÞÞ
>
g: ð11Þ

In addition, if the function fn(�) is only known in parametric form, it is in principle possible

to estimate it via the same EM framework. As an example, which we use for TRF modeling,

consider fn(x) = α x, where α is an unknown constant. Then, the coordinate descent update for
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α takes the form [13]:

âð‘þ1Þ ¼

XK

i¼1

EX �̂
ð‘Þ

i;m

XW

j¼1

x>
ði;j� 1Þ

Ŝð‘þ1Þ� 1
m xði;j� 1Þ

( )

XK

i¼1

EX �̂
ð‘Þ

i;m

XW

j¼1

x>ði;j� 1ÞŜ
ð‘þ1Þ� 1
m ðxði;jÞ � μ̂ð‘þ1Þ

m Þ

( ) : ð12Þ

In the definition of �̂
ð‘Þ

i;m in Eq (8), both the numerator and the denominator include expo-

nential functions of the states. Therefore, the conditional expectations in Eq (7) and in the

update equations above are intractable even if the joint smoothing density of XN
1
j YN

1
; Ŷð‘Þ is

known in closed-form [29]. In this work, we use two different approaches to address this chal-

lenge: In Approach 1, we use Monte Carlo Approximations for computing the aforementioned

expectations. While this approach is rather straightforward to implement, the resulting algo-

rithm is computationally intensive. In Approach 2, we instead derive closed-form approxima-

tions to the densities required for computing the expectations. The underlying parameters can

be updated recursively, which makes the resulting algorithm scalable with the problem dimen-

sion. The details of these approaches are given in S1 Appendix.

Dynamic estimation of the TRF

Consider a cocktail party setting [45], in which a subject is listening to two speakers simulta-

neously, but only attending to one of the speakers. While the subject is performing this task,

the neural response is recorded using MEG. Let yt 2 R denote the auditory component of the

neural response at time t 2 {1, . . ., T}, extracted from multichannel MEG recordings via the

Denoising Source Separation (DSS) algorithm [22, 66]. Also, let sðqÞt be a speech feature of

speaker q 2 {1, 2} at time t, e.g., the acoustic envelope, and denote by sðqÞt ¼ ½s
ðqÞ
t ; . . . ; sðqÞt� L� 1�

>
2

RL
the vector containing the previous L features up to (and including) time t. In this work, we

consider sðqÞt to be the acoustic envelope in log scale, which is known to be a reliable predictor

of the neural response [47]. Other features such as phoneme representations, word frequency

measures, and semantic composition have also been considered in the literature [52–54], and

can also be included in sðqÞt . A widely-used linear stimulus-response model is given by:

yt ¼ s>t ~τ t þ vt; ð13Þ

where ~τ t ¼ ½~τ
ð1Þ
t ; ~τ ð2Þt � 2 R2L

is the concatenation of ~τ ð1Þt and ~τ ð2Þt as the TRFs at time t corre-

sponding to speakers 1 and 2, respectively. Also, st ¼ ½s
ð1Þ
t ; sð2Þt � 2 R2L

is the concatenation of

the speech feature vectors at time t, and vt represents the observation noise. In light of this

model, and as mentioned in the Introduction, the TRF ~τ ðqÞt can be thought of as the impulse

response of a linear, but time-varying, system representing the neural activity and taking as

input the speech features of speaker q, for q = 1, 2.

We assume vt � N ð0; s2Þ and define the nominal observation SNR as 10 log 10ð
�E=s2Þ,

where �E is the average of the signal component in Eq (13) over the trial of length T. It is com-

mon to consider a piecewise-constant approximation to the TRFs over consecutive non-over-

lapping time windows of length t0, which is comparable to the length of the TRF L. In other

words, ~τ t ¼ τn for t 2 {(n − 1)t0 + 1, . . ., nt0} and n 2 {1, . . ., N} where N = T/t0 is assumed to

be an integer without loss of generality. We then define yn ¼ ½yðn� 1Þt0þ1; . . . ; ynt0 �
>

,

Sn ¼ ½sðn� 1Þt0þ1; . . . ; snt0 �, and vn ¼ ½vðn� 1Þt0þ1; . . . ; vnt0 �
>

.
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TRF estimation via regularized RLS. First, the TRFs are represented over a dictionary G,

i.e, τðqÞn ¼ GxðqÞn , in order to enforce smoothness in the lag domain and to mimic static TRF

estimates [48, 49]. The dynamic TRF estimation framework of [47] can be stated as:

x̂n ¼ arg minx2R2L

Xn

i¼1

l
n� i
k yi � S>i ~Gx k2

2
þghðxÞ

τ̂n ¼ ~Gx̂n

8
>><

>>:

ð14Þ

where λ 2 (0, 1) is the forgetting factor, γ is the regularization coefficient, h(.) can either be an

ℓ1 or ℓ2 penalty [57], and ~G ¼ diag ðG;GÞ is a block diagonal matrix with G containing the

dictionary atoms. Similar to [11, 47], we consider a Gaussian dictionary G 2 RL�D
where the D

columns of G are shifted Gaussian kernels. The parameter λ in Eq (14) induces a trade-off

between adaptivity and robustness of TRF estimation.

TRF estimation via MSAR modeling. While the RLS estimates of the TRF capture the

dynamics via the forgetting factor mechanism, they are not capable of capturing abrupt and/or

recurring state dynamics. MSAR models, on the other hand, explicitly model such dynamics

and are thus a suitable class of models for TRF estimation. Given that the TRF is not directly

observable, the conventional MSAR models are not readily applicable. In addition, the SSM

extensions of MSAR models do not admit simple parameter estimation procedures. We thus

consider the regularized least squares (LS) estimates of the TRFs, i.e., the RLS estimates with λ
= 0, as a surrogate of the true TRFs, which can then be modeled as an MSAR process.

To this end, let x̂n be the regularized LS estimates of the TRF. To capture the dynamics of

x̂n, we consider a first-order Markov-switching process with J states. The underlying HMM is

parameterized by the initial probabilities πi, i = 1, 2, � � �, J and transition probability matrix Pij,
i, j = 1, 2, � � �, J. Let sn 2 {1, 2, � � �, J} denote the state at time n. Then, we have:

x̂n ¼ ajx̂n� 1 þ wj;n; if sn ¼ j; j ¼ 1; 2; � � � ; J; ð15Þ

where αj is the rate of change of the TRF in state j, and wj;n � N ðμj;QjÞ is the i.i.d.

sequence of process noise in state j, j = 1, 2, � � �, J. The parameters to be estimated are

M :¼ ffpig
J
i¼1
; fPijg

J;J
i;j¼1

; faj;μj;Qjg
J
j¼1
g. Let ωj,n denote P½sn ¼ jjfx̂mg

n
m¼1
;M�. Then, the

MSAR estimates are given by:

x̂ðMSARÞn :¼
XJ

j¼1

oj;nðμj þ ajx̂n� 1Þ; n ¼ 1; 2; � � � ;N: ð16Þ

In S1 Appendix, we provide an EM-based algorithm for estimating the parameters M and

recursively computing ωj,n.
TRF estimation via state-space models. The RLS estimate in (14) is a filtering estimate

by design and is suited for real-time estimation of TRFs. For a more precise dynamic analysis

of the TRFs in an off-line fashion, SSMs have the advantage of providing smoothed estimates

and directly modeling the evolution of the TRFs through the state equation. We use the SSM

below to represent the TRF dynamics and its relation to the neural response:

xn ¼ axn� 1 þ wn

τn ¼ ~Gxn

yn ¼ S>n τn þ vn

8
>>><

>>>:

ð17Þ
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where α 2 (0, 1) controls the nominal rate of change of the TRF, similar to the effect of the for-

getting factor λ in Eq (14) for the RLS framework. In [67], a correspondence between α and λ
has been discussed which can result in the same filtering estimates of the SSM in Eq (17) with

Gaussian noise and the RLS model in Eq (14), without any penalization. The parameter α can

either be estimated in the EM framework as in Eq (12) [13], or it can be set based on the

domain-specific knowledge of the problem to provide a target adaptivity-robustness trade-off,

akin to choosing the forgetting factor in the RLS algorithm. The estimated TRFs in (17) are

computed from the smoothing estimates as τ̂n ¼ ~Gx̂njN .

By assuming a GM density for wn in Eq (17), we can similarly obtain smoothing estimates

of the TRFs, by using the two approaches discussed in the preceding section.

Model parameter settings

The following subsections provide detailed information on the choice of the various model

parameters used in the simulation study and application to experimentally-recorded data from

the Results section.

Parameter settings of the simulation study. For the simulation study, we use a sampling

rate of Fs = 100 Hz and a length of 250 ms for the TRFs, i.e., L = 0.25Fs. Let G be a dictionary

consisting of five Gaussian atoms with variances of 0.018 s2 whose means are separated by 50

ms increments starting from a lag of 0 ms to 200 ms. This results in G 2 R25�5 and xn 2 R
10 in

Eqs (14) and (17). We consider a piecewise-constant model for the TRFs over windows of

length 300 ms resulting in N = 300 TRF samples over the trial for each speaker.

We consider W = 5, i.e., the TRF dynamics are governed by one mixture component in

each window of length Wt0/Fs = 1.5 s. For simplicity, we consider S1:M to be diagonal, which

makes the parameter update formulas of Eqs. (S3) and (S5) in S1 Appendix to also take diago-

nal forms. The number of mixture components is chosen as M = 5 using the AIC criterion and

log-likelihoods computed using Eqs. (S19) and (S20) given in S1 Appendix. The number of

states J in the MSAR model can also be chosen via AIC, but we here take J to be the same as M
for fairness of comparison with the SSM model with GM process noise.

We also set the parameters of Algorithm S2 given in S1 Appendix as ΓF = ΓB = ΓS = M. To

initialize the EM algorithm, we use two methods: 1) initializing with p̂ð0Þ1:M ¼
1

M, random means

μ̂ð0Þ1:M close to zero, and Ŝ
ð0Þ

1:M equal to the estimated process noise covariance in the linear Gauss-

ian SSM, and 2) setting Ŷð0Þ as the GM fit to the empirical samples of process noise in the lin-

ear Gaussian SSM, which are computed from the smoothed state estimates. In other words, a

GM is fit on the state residuals, i.e., empirical process noise samples, ŵn ¼ x̂ðsÞn � ax̂
ðsÞ
n� 1 where

x̂ðsÞn denotes the smoothed states using a linear Gaussian SSM. The state residuals here do not

necessarily exhibit a clear multimodal histogram due to the Gaussian assumption in the model

and the inaccuracies in state estimation. Nevertheless, a GM fit on the state residuals serves as

a reasonable initialization for the EM algorithm in our experience.

Note that in the simulation studies, we have used the first initialization strategy to show that

under reasonable SNR conditions, the algorithm is able to initialize with large covariances, i.e.,

based on the linear Gaussian SSM estimates, and subsequently retrieve the concentrated mix-

ture components. This is analogous to particle smoothing methods where the initial samples

are drawn from a broad density and through consecutive weighting and resampling, the parti-

cles can eventually capture the underlying densities. In our experience, the second initializa-

tion strategy results in faster convergence, especially under poor SNR conditions, due to the

extra information extracted from the residual estimates from the linear Gaussian SSM. Thus,

for the real data analysis, we have used the second initialization strategy.
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For the forgetting factor λ in RLS, an effective estimation length [47] of 2 s is chosen to

result in comparable TRF estimates to those of the SSM with α = 0.99. Also, γ in Eq (14) for an

ℓ2 penalty is tuned through two-fold cross-validation. For the Gaussian SSM and the SSM with

GM process noise, diagonal process noise covariance matrices are considered, and both the

process and observation noise parameters as well as the states are estimated simultaneously for

each trial run.

We have considered a total of U = 2000 particles in Algorithm S1 given in S1 Appendix to

approximate densities of dimension 2D(W + 1) = 60, so that state estimates are comparable to

those obtained by the closed-form approximation. Note that the choice of the number of parti-

cles is critical for the performance of particle smoothing, as the number of particles required

for stable estimation grows exponentially in the dimension of the densities.

Parameter settings of the experimentally-recorded data analysis. We set the TRF length

to 300 ms and consider TRFs to be piece-wise constant over windows of length 400 ms. Also,

we choose W = 5 to enforce that the TRF dynamics are governed by one mixture component

in each window of length 2 s. We represent the TRFs over a Gaussian dictionary with means

separated by 20 ms starting from 0 to 280 ms, and variances of 8.5 × 10−3 s2. The parameters λ
and α are set to 0.92 and 0.97, respectively, to achieve comparable TRF estimates from Eqs (14)

and (17). The ℓ2 penalty γ in (14) is determined via two-fold cross-validation. We consider

diagonal covariance matrices for the process noise to reduce the dimension of Θ, and estimate

the observation noise σ2 in the EM framework. The forgetting factor in Eq (14) enforces a tem-

poral continuity in TRF estimates and increases robustness to noise and artifacts. The same

effect can be replicated in the SSM of Eq (17) by considering α close to one and restricting the

dynamic range of the process noise wn.

To enforce the latter, we consider IG conjugate priors [61] on the diagonal elements of the

process noise covariance matrices. For the Gaussian SSM with wn � N ð0;QÞ and Q = diag

([q1, . . ., q2D]), the log-prior takes the form

k log PðQÞ ¼ k
P2D

d¼1
ðð~ad þ 1Þ log qd þ ~bd=qdÞ þ c4; ð18Þ

where f~ad;
~bdg

2D
d¼1

are the parameters of the IG prior and c4 includes terms not dependent on

qd’s. The log-prior is then added to the surrogate Q-function of the EM algorithm, and κ deter-

mines the strength of the prior with respect to the complete data log-likelihood. We choose κ
= N for the linear Gaussian case and κ = N/M for the linear SSM with GM process noise, to

correct for the number of mixture components. We tune the IG parameters using empirical

samples of the process noise from the RLS estimates, computed as ŵn ¼ x̂ðRLSÞn � ax̂ðRLSÞn� 1 . Thus,

the process noise variance is controlled by the IG prior, which prohibits drastic temporal

changes in the TRF. For the SSM with GM process noise, we also bound the elements of μ̂ð‘Þ1:M

in each EM iteration such that the variance of the estimated GM process noise along each

dimension is not larger than those of the linear Gaussian case, i.e., estimated qd’s using the EM

algorithm. Note that in the absence of such priors, the EM algorithm would likely result in

TRFs that are highly variable in time and with no meaningful morphological structure.

Subjects, stimuli, and procedures

We have used data from two separate attention switching experiments in this work, which we

refer to as the at-will and instructed attention switching experiments. Neuromagnetic signals

were recorded at a sampling frequency of 2 kHz using a 157-sensor whole-head MEG system

(Kanazawa Institute of Technology, Nonoichi Ishikawa, Japan) in a dim magnetically shielded

room.
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The at-will attention switching dataset is a subset of recordings in [51], where the partici-

pants included five younger-adult (22-33 years old) native English speakers with normal hear-

ing recruited from the University of Maryland. Only one of the subjects exhibited a

meaningful auditory neural response (i.e., auditory DSS rotation matrix; see MEG Data Pre-

processing subsection for details) with a reliable behavioral report. Two stories were presented

diotically to subjects’ ears, one narrated by a male speaker and the other one by a female

speaker. The stimuli consisted of two segments from the book, The Legend of Sleepy Hollow by

Washington Irving. Subjects listened to trials of the same speech mixture (each 90 s in dura-

tion), and were instructed to start attending to the male speaker first, and then to switch their

attention between the two speakers at their own will for a minimum of one and a maximum of

three times during each trial. Subjects were also given a switching button that they were

instructed to press every time they decided to switch attention. For each subject, 3 trials were

recorded. Prior to the experiment, a single-speaker pilot study was performed where subjects

listened to three 60 s trials with similar stimuli. Further experimental details can be found in

[51].

The instructed attention switching dataset is from the recordings in [50], where participants

included seven normal hearing young adults (20-31 years old). The stimuli consist of four seg-

ments from the book A Child’s History of England by Charles Dickens narrated by a male and

female reader. Two different 60 s-long speech mixtures of the two speakers were generated,

and each mixture was presented to subjects diotically for three trials. In each trial, subjects

were instructed to focus on one speaker in the first 28 s of the trial, switch their attention to the

other speaker after hearing a 2 second pause (between 28 s and 30 s time stamps), and main-

tain their focus on the latter speaker through the end of the trial. After completing the trials for

each mixture, subjects answered comprehensive questions related to the passages they

attended to. The MEG recording and preprocessing setup for this experiment is similar to that

of the at-will attention switching experiment, and more details can be found in [50].

MEG data preprocessing. Three reference channels were used to measure and cancel the

environmental magnetic field by using time-shift PCA [21]. All MEG channels and speech

envelopes were band-pass filtered between 2 Hz and 8 Hz (delta and theta bands), correspond-

ing to the slow temporal modulations in speech [46, 48], and downsampled to Fs = 100 Hz.

Similar to [47, 50, 51], we used the DSS algorithm [22] on pilot trials to decompose the MEG

data into temporally uncorrelated components. By using an averaging bias filter for promoting

consistency across trials, we ordered the DSS components according to their trial-to-trial

phase-locking reliability and chose the first component as the auditory neural response.

Supporting information

S1 Appendix. Supplementary methods. This appendix includes: (i) detailed derivations of

the two approaches used for computing the expectations in Eqs (9), (10), and (11), (ii) the cri-

teria for model order selection, and (iii) details of the MSAR estimation procedure.

(PDF)
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