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Introduction

The magnetoencephalography (MEG) re-  for simultaneously determining the TRFs

sponse to continuous speech is often
modeled as generated by a linear filter,
the auditory temporal response function
(TRF). Functional roles of sensor-space
estimated TRFs have been well charac-

and their cortical distribution, by inte-
grating the TRF and distributed forward
source models into a unified model, and
casting the estimation task as a Bayesian
optimization problem. TRF and source

terized, but less so for neural-source esti-  estimations now compete with each

mated TRFs, which are problematic to
compute. Existing methods employ two
stages: a distinct TRF estimate for each
potential location, only after mapping
the response to neural sources. This sep-
aration fails to exploit MEG's full source
localization power.

Here we provide a novel framework
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other to explain observed responses,
which restricts spatial leakage (spread).

We demonstrate that our proposed al-
gorithm shows significant improvements
over other methods, including better ef-
fective spatial resolution, and reduced
reliance on fine-tuned coordinate co-reg-
istration.

Tip: For more on
linear filter model
and convolution(*)
see the box below.
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A1m: minimize the cost function w.r.t. to the filters to find the ones making best prediction.
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dense signal (i.e. continuous speech)
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e MEG sensor measurements, Y arise from neural currents, J:
Y=LJ+W,

L, the lead-field (N *3M) matrix (i.e., Maxwell’s equations)

W, measurement noise ~ Gaussian (measured covariance, X,,)

* model assumes linear stimulus processing, so the neural
currents, | due to stimulus history, S are:

J=®S+V
®, matrix of 3D vector TRFs per neural source
V, background activity
* background activity at each source ~ Gaussian,
independent of other sources.

— variance of mth source, I'y, 3 *3 matrix
— source variance,I' 3M * 3M block diagonal matrix

 Eliminate | to get the likelihood of observed MEG data,
as a function of TRF matrix,® and source covariance,I:

M L
T,—T/2 1 2 SN\ V(.2 2 Y 1/2
p(Y]® T) OC |2y + LTL 1|~ 1/2 x exp (—§HY—L<I>SH ) 1®ll2.1,1 = Z Z (Tm,R,ﬁTm,A,z*Tm,SJ)

(2, +LTLT) ™"

Problem Formulation:
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— Promotes sparse solution.
— co-registration coordinate invariant

R: Right
A: Anterior
S: Superior
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Data fidelity term  Regularization term
minimizes error in prediction. guards against overﬁtting.

But, T', source variance is not known. Need a suitable approximation!

Idea: Solve for both TRF matrix,® and source variance,T" !!

tion stability
c e T T 1 2
minimize > log (B +LIL') = SIY - L<I>SH<Ew+LFLT)_1 + @211
Cost function is not convex anymore » hard to reach the optimal solution
Direct optimization w.r.t. both &, T difficult y» Update ® and T alternatingly

Results

Regularization parameter: controls the
importance of the regularization term.
bigger n — sparser (simple) solution
smaller n— denser (complex) solution
selected by cross-validation or estima-

e Simulated MEG data: matrix.
— finer source space, resolution ~ 3.1 mm (ico-5). — background noise = unaltered MEG recording of
— direction constrained (surface normal) lead-field different segment.
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* Observations: — estimated 3D vector TRFs align well with direction
— recovers TRF time-courses faithfully. normal to cortical surface without requiring it as as-

— the spatial extent of the active dipole sources close- sumption.

ly resembles the simulated active region. — spurious peaks are weaker and more variable.
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Proposed Algorithm

— input: MEG matrix, Y; Stimulus matrix, S; Lead-field
matrix, L; regularizing parameter, n

— initialize ®© =0
— repeat |

1. compute Cy = (Y - Le")s) (Y —Las) T

o) r(r+l) — arg min tr (E;le<T)) + log |2y s.t. 2y = 2y + L'TLé
I

3. compute "V — 5 4 Lr0+DLT
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6.set r<—r+1

5. unti < tol or » = Rmax

— output: "), where R is the index of the last iteration.

Comments:

* kernels are allowed to compete with each other, unlike indepen-
dent analysis methods (Brodbeck et al., 2018).

* No assumptions for orientation of the source activity or the 3D
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e adaptively changes the definition of
‘best” kernels by noise normalization.
* non-convex problem

* hard to get the optimal solution

e we used Champagne (Wipf et al.,,
2010)

* each pass is guaranteed to reduce
cost function

* assigns sparse kernels to each neural
sources to make ‘best” prediction

* convex (easy) problem.

e smooth + non-smooth

e forward-backward splitting

 we employ ‘FASTA’ (Goldstein et al.,
2014)
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python implementations

vector TREs. available at: Of
Dataset

* MEG Data —resolution ~ 7mm.

— 17 participants. — virtual dipoles on 3322 grid points.

— Two 60-second segments from “The Legend of — free orientation lead-field matrix.

Sleepy Hollow” by Washington Irving. * Stimulus representation:

— 3 repetitions for each segment. — acoustic envelope, average over frequency band

* An average “brain model” of an auditory spectrogram representation (Yang

— “fsaverage”, FreeSurfer. et al., 1991).

— scaled and coregistered to each subject's head.

— volume source space on regular grid.

* Experimental MEG data: (Mardia, 2009) using permutation test.

— 3-told cross-validation for each subject. — average response functions across subject. only

— spatial smoothing w/ Gaussian kernel (10 mm). significant values displayed (p <.05).

— tested for consistent directionality vs. uniformity
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* Acoustic envelope response functions: tor cortices at 45 ms over 20 ms.
— peaks at 20 ms, 45 ms and 105 ms. — 100 ms peak right hemisphere dominant.
— bilaterally centered on auditory cortex. — current dipole reverses direction in sensorimotor

— increased activity in inferior frontal, sensorimo-  cortex at 85 ms.




