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•Simulated MEG data:
– finer source space, resolution ~ 3.1 mm (ico-5).
– direction constrained (surface normal) lead-field 

matrix.
– background noise = unaltered MEG recording of 
different segment.

Results
•Experimental MEG data:
– 3-fold cross-validation for each subject.
– spatial smoothing w/ Gaussian kernel (10 mm).
– tested for consistent directionality vs. uniformity 

(Mardia, 2009) using permutation test.
– average response functions across subject. only 
significant values displayed (p < .05).

Dataset
•MEG Data
– 17 participants.
– Two 60-second segments from ‘The Legend of 
Sleepy Hollow’ by Washington Irving. 
– 3 repetitions for each segment.
• An average “brain model” 
– “fsaverage”, FreeSurfer.
– scaled and coregistered to each subject's head.
– volume source space on regular grid. 

– resolution ~ 7mm.
– virtual dipoles on 3322 grid points.
– free orientation lead-field matrix. 
•Stimulus representation:
 – acoustic envelope, average over frequency band 
of an auditory spectrogram representation (Yang 
et al., 1991).
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– Promotes sparse solution. 
– co-registration coordinate invariant

Mixed-norm Regularization

R: Right
A: Anterior
S: Superior

Introduction

Model Schematic

The magnetoencephalography (MEG) re-
sponse to continuous speech is often 
modeled as generated by a linear filter, 
the auditory temporal response function 
(TRF). Functional roles of sensor-space 
estimated TRFs have been well charac-
terized, but less so for neural-source esti-
mated TRFs, which are problematic to 
compute. Existing methods employ two 
stages: a distinct TRF estimate for each 
potential location, only after mapping 
the response to neural sources. This sep-
aration fails to exploit MEG's full source 
localization power.
 Here we provide a novel framework 

for simultaneously determining the TRFs 
and their cortical distribution, by inte-
grating the TRF and distributed forward 
source models into a unified model, and 
casting the estimation task as a Bayesian 
optimization problem. TRF and source 
estimations now compete with each 
other to explain observed responses, 
which restricts spatial leakage (spread). 
 We demonstrate that our proposed al-
gorithm shows significant improvements 
over other methods, including better ef-
fective spatial resolution, and reduced 
reliance on fine-tuned coordinate co-reg-
istration.
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Linear filter model and kernels:

Stimulus:

Response:

 output of a linear filter is convolution ( ) of the input with its kernel (             ) :*
sparse signal dense signal(i.e. repetitive tones) (i.e. continuous speech)

Proposed Algorithm
      update:
• adaptively changes the definition of 
‘best’ kernels by noise normalization.
• non-convex problem 
• hard to get the optimal solution
• we used Champagne (Wipf et al., 
2010) 
• each pass is guaranteed to reduce 
cost function

      update:
• assigns sparse kernels to each neural 
sources to make ‘best’ prediction
• convex (easy) problem. 
• smooth + non-smooth
• forward-backward splitting
• we employ ‘FASTA’ (Goldstein et al., 
2014)

python implementations 
available at:

2.
3. compute

4.

6. set 
– output:        , where R is the index of the last iteration.

1. compute

– input: MEG matrix, Y; Stimulus matrix, S; Lead-field 
        matrix, L; regularizing parameter, 
– initialize 
– repeat

5. until           or 

Comments: 
• kernels are allowed to compete with each other, unlike indepen-
dent analysis methods (Brodbeck et al., 2018). 
• No assumptions for orientation of the source activity or the 3D 
vector TRFs.

•Acoustic envelope response functions:
– peaks at 20 ms, 45 ms and 105 ms. 
– bilaterally centered on auditory cortex.
– increased activity in inferior frontal, sensorimo-

tor cortices at 45 ms over 20 ms.
– 100 ms peak right hemisphere dominant.
– current dipole reverses direction in sensorimotor 
cortex at 85 ms.

Computational Model

• Eliminate J to get the likelihood of observed MEG data, 
as a function of TRF matrix,    and source covariance,   :

Problem Formulation:

Data fidelity term
minimizes error in prediction.

Regularization term
guards against overfitting.

{ {

But,   , source variance is not known. Need a suitable approximation!
Idea: Solve for both TRF matrix, and source variance, !!

Regularization parameter: controls the 
importance of the regularization term.
 bigger          sparser (simple) solution
smaller         denser (complex) solution

• model assumes linear stimulus processing, so the neural 
currents, J due to stimulus history, S are:
    J =  S + V
 , matrix of 3D vector TRFs per neural source    
V, background activity
• background activity at each source ~ Gaussian, 
independent of other sources. 

• MEG sensor measurements, Y arise from neural currents, J: 
    Y = L J + W,
L, the lead-field (N x 3M) matrix  (i.e., Maxwell’s equations) 
W, measurement noise ~ Gaussian (measured covariance,   )

– variance of mᵗh source,  3 x 3 matrix
– source variance, 3M x 3M block diagonal matrix

{selected by cross-validation or estima-
tion stability

Cost function is not convex anymore hard to reach the optimal solution  
Direct optimization w.r.t. both , difficult Update  and   alternatingly

minimize           +              + 
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Aim: minimize the cost function w.r.t. to the filters to find the ones making best prediction.

M Neural sources
Virtual current dipoles background activity

cost function

Tip: For more on 
linear filter model
and convolution(*)
see the box below.

N MEG channels

• Observations:
– recovers TRF time-courses faithfully.
– the spatial extent of the active dipole sources close-
ly resembles the simulated active region.

– estimated 3D vector TRFs align well with direction 
normal to cortical surface without requiring it as as-
sumption.
– spurious peaks are weaker and more variable.

Ground Truth

convolution
in progress:


