Phase-locking in Human Auditory Cortex to Spectrotemporal Modulations

Jonathan Z. Simon

Biology / Electrical & Computer Engineering Neuroscience and Cognitive Sciences

University of Maryland, College Park

Computational Sensorimotor Systems Laboratory

Yadong Wang

Juanjuan Xiang Nayef Ahmar Ling Ma Maria Chait

David Poeppel Timothy Horiuchi Chris Rogers Julien Dagenais Joon Kim

> Ray Shantanu Jeff Walker

Outline

- Introduction & Background: MEG
- Auditory Steady State Response (SSR)
- Experiments: Design, Results & Implications
- Related Lab Activity

MEG — Magnetoencephalography

• Simultaneous Whole Head recordings 160 sensors (3 reference) • Exquisitely Sensitive ~ 100 fT (10^{-13} Tesla) $\sim 10^4$ neurons • Temporal Resolution $\sim 1 \text{ ms}$

MEG Magnetic Signal

MEG compared to EEG

Temporal resolution high as EEG Fast, easy set-up Magnetic fields are not attenuated or distorted, unlike electric fields Higher spatial resolution(?)

Expensive Inverse problem worse? Better?

Complementary Techniques

EEG

Auditory MEG Responses

Auditory Responses Lateralize Strongly!

Time Course of MEG Responses

What are the MEG Events? What are the Stimulus Events?

An Alternative to Time: Frequency

- Use Stimuli localized in Frequency rather than time
- Examine Response at Same Frequency
- Well Established Method:

Frequency Response or Transfer Function

• Stimulus Modulated at Single Frequency:

Steady State Response (SSR)

Extremely Precise Phase-Locking: 0.01 Hz No trial-to-trial jitter

Whole Head Steady State Response

Data Reduction via Equivalent Dipoles

Raw Data

Two Dipole Fit

Left Dipole *Dipoles are Complex*

Right Dipole 32 Hz

Equivalent Dipole Transfer Function

The Dilemma of Complex Stimuli

The Dilemma of Complex Stimuli

SSR as Function of Bandwidth

Tone

1/3 Octave Noise

2 Octave Noise

32 Hz Modulation

Multiple Transfer Functions

Stimuli Revisited

- Multiple Bandwidths: 0 to 5 octaves
- Low Modulation Frequencies: 2 to 32 Hz

Natural Sounds (e.g. speech)

Intracranial Recordings from Human Auditory Cortex find peaks at 4-8 Hz in Liégeois-Chauvel et al. (2004).

• SSR vs. "Continuous Onsets"?

Evidence of significant (~30%) linearity to *envelope of speech* from Ahissar et al. (2001).

Averaged Transfer Functions

Still To Do

- More Subjects (beat down variability)
- Simultaneous Two-Dipole Fits
- Fit only to channels of Significant Response: e.g. F-test, Rayleigh test, phase-weighted tests
- Reduce Variance due to dipole depth Shallow Magnitude/Depth trade off
- Bootstrap confidence intervals within subjects

Next on "To Do" List

Related Project: Speech + ICA

Speech & Speech-like Stimuli

Auditory Independent Component Responses

Independent Component Analysis

Summary

- Whole Head SSR
 - -> Spatial Phase Coherence
 - -> Complex Dipole
- Dipole Generated Transfer Functions
 - -> Independent of Bandwidth
 - -> Low Pass (?)
 - -> Low Frequency Peak ?
- SSR Methodology Complementary to Time Based Methods (e.g. Speech with ICA)

Thank You

