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Neural source dynamics of brain responses to <
continuous speech: from acoustics to comprehension
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The high temporal resolution of electro- and timated a separate response function for Acoustic envelope Word frequency Semantic composition
magnetoencephalography (EEG/MEG) each virtual current source dipole. R & o —_ | .

makes them ideal tools to study brain re- We analyzed data from participants listening
sponses to rapidly evolving continuous to excerpts from an audiobook with 3 pre-
stimuli such as speech. Linear kernel estim- dictor variables:

ation has been used to deconvolve EEG and — Acoustic envelope: acoustic power
MEG responses to continuous stimuli (see across frequency bands . £ L, &

ny : . : 1 r O +r O
qu Llnea.r k_ernel_estlmatlop ). However, — Word frequency: strong predictor of 2 - L -
this analysis is typically applied to sensor lexical processing F 2 1
space data, not using the full neural source S " Hon: estimate of = S =
localization power of MEG. To localize re- - Semantic composition. estimale of 5e- T & -~ £

mantic integration; correlated with other

sponses anatomically, we computed distrib-
uted minimum norm source current
estimates of continuous MEG data and es-
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peech
— Auditory cortex (~40 ms, ~100 ms) — Strong left-lateralized response in — Left hemisphere: temporal progression
EACOlIJstic _—/\\/ /\’/\u’\/\ V/\\/\/\\J//\//\\_/\ — Sensorimotor parietal and frontal cortices auditory cortex (~170 ms) from anterior tenjpo.ral lobe to inferior
nveiope ' (~50 ms) — Later, weaker bilateral frontal response frontal gyrus activation
— Right-hemisphere: similarly localized,
ord | | \ temporally more diffuse
F
requency _— — J Clustered response functions sponses due to the same underly-
Semantic Because of the smoothness of MEG source ing neural source should exhibit the
Composition ——— estimates (See box “Point spread function”) same time course. Hierarchical Response functions
| response functions are composed of mul- clustering (Ward, 1963) of dipoles A - hiagt 05
5 | ' \ LW tiple overlapping responses. However, re- based on their response time- Noma o et e ey (P <.05).
‘k‘u:fv AL ‘/\'\‘w\M”A\”\'O‘ﬂ'f‘”ﬂw""ﬂ*«%«”!‘l deJM ,, T“M‘w,'M\"W"WN"“‘VM“”" o course revealed separable neural on-significant values were set to zero.
S W Y| sources for each predictor variable.
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Method: linear kernel estimation o - -
T—— ¥ cornal estimat 3 — Combining linear kernel estimation with
inear fiter: inear fernet estimation: 2 source localization allows anatomically
Convolve (=) a kernel J\/ with a sparse signal Stimulus and response are known; find the best linear kernel separating brain responses to different
to produce the response from the stimulus: : :
0 _ stimulus properties
> | | | 7 WWWMM — Localization preserves temporally precise
= | | oC . s
7 ; : | > response functions (order of tens of milli-
J\/ _/\/ W/\ - 5 seconds)
® i i i P M\/NW’\/M\M g — Simultaneously sensitive to variables re-
3 4'/\/ ' /\/ ' \/\ ® lated to higher cognitive levels in speech
§ = comprehension as well as basic acoustic
Estimated kernel properties
Convolving the same kernel with a more dense signal: Actual response — Robust responses from ju st 6 minutes of
g jv\/\/\/\/\p/\/\/\/\/\/\/\/\/\ d— % - X F A A ) PR A g data
P 2 AR A v " - g = — Broadens the possibilities for studying
. i i | ¥ oS W e t)‘ S2 ___/\\_ I I
Q ' Predicted response (Stimulus = kernel) = g o speec_h Comprehen3|on with natural
o 9 ® 83, PN gl stimuli
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