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Magnetoencephalography (MEG)

e Non-invasive, Passive, Silent Neural Recordings

e Simultaneous Whole-Head Recording (~200 sensors)
* Sensitivity

high: ~100 fT (10~!° Tesla)

low: ~10%— ~10° neurons
e Temporal Resolution: ~1 ms
e Spatial Resolution
coarse: ~1 cm
ambiguous
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Functional Imaging

Functional magnetic
resonance imaging

fMRI
Hemodynamic Excellent spatial resolution
techniques (~1-2 mm)
Poor temporal resolution
Positron emission (~159)
tomography
PET

PET, EEG require
Non-invasive recording across-subject
from human brain averaging

(Functional brain imaging) <’_ TMRI and MEG cam

capture effects in
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MEG Measures Neural Currents

* Direct electrophysiological measurement

SQUID @CK * not hemodynamic
— . * real-time
. Magnetic Dipolar Fiel . : L
recording (P?gjeecttif)n) polar Field * No unique solution for distributed source
surface
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Environmental Noise

\ Vibrational
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Sensor Noise
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Physiological Noise
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External Noise Reduction Aids

Magnetically shielded room

Magnetic/electromagnetic sheilding

Gradiometers (sensitive to near
sources)

—

—

v

\ Gradiometer

LA

© Spectrally Selective Filters

Spectral filtering (high-pass, notch,
low-pass)

Computational Sensorimotor Systems Laboratory



Effects of Filtering

Raw: HPF 1 Hz, Notch 60 Hz:
£ e |
U mw wW«Juwﬂmmwlm I !\M\M‘ W

. 2 (S) 8 1 0 'nfs 'ﬁm;' (s)' 1f5' 2

Frequency (Hz) Frequency (Hz)

After filtering, typically ~90% of MEG power is still environmental noise.

./ Filtering also adds distortions (group delay, phase shift, etc.).

Computational Sensorimotor Systems Laboratory



TSPCA

e Time Shifted Principle Component Analysis

e Target: Environmental Noise

* Requirement: Reference channels

@ | in colloboration with Alain de Cheveigné

Computational Sensorimotor Systems Laboratory



TSPCA Example

Empty Chamber
RMS (fT) before denoising after
1000
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0
) after
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Frequency (Hz)

U. Maryland/KIT
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TSPCA Example

Without Notch & HP hardware filters

E 5000+
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U. Maryland/KIT
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TSPCA:How it works

First, understand classic Scalar Regression methods
(e.g. CALM)

NOISY +O CLEANED
CHANNEL CHANNEL

When scalar regression may fail since:
Noise in Reference may be filtered w.r.t. Brain channel
Noise in Reference may be time-shifted w.r.t. Brain channel
,~-May be more independent noise sources than References

Computational Sensorimotor Systems Laboratory



TSPCA:How it works

Generalize Scalar Regression:

Include Multiple Time-Shifted versions of References
Linear combinations of Time-Shifts are Filters
Increases effective number of References

NOISY +<> CLEANED
CHANNEL CHANNEL

model-free
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TSPCA: How it works

DELAY

|

5,(1)=s,(1) - zz%rj(z +7-— —)

R

BRAIN REFERENCE

CHANNEL CHANNELS
Example:

100 Taps (individual time delays)

3 Reference sensors = 300 coefficients/Brain Sensor
157 Brain sensors => 47100 coefficients Total

cf Scalar Regression: S,\(I)— s (1)— ZCXAJFJ(I)
J=1
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TSPCA:How it works

Algorithm:
1. Time-shift 3 reference signals by up to £N/2
samples (= 3N time-shifted signals)
2. Orthogonalize the 3N shifted signals to obtain an
orthogonal basis (PCA)
3. Project each brain channel on this basis
4. Subtract projection to obtain clean channel...

... et voila!

Computational Sensorimotor Systems Laboratory



TSPCA Example
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(Advanced Telecommunications Research, Kyoto)
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TSPCA Example
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RMS field (fT)
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TSPCA Summary

 TSPCA removes ~98% of noise power,
SNR increase > 10 dB for low frequencies

—

before _|
after

0
_1OM

0 10 20
Frequency (Hz)

SNR: ratio of

| Signal other than

Environmental

| Noise to

Environmental Noise

e No Target Distortion: only Reference channels filtered;
* Tested on wide range of systems

e Single Parameter to choose: N =

(# of taps), not sensitive

Caveats: For small durations, N cannot be too large
Large N increases processsing time O(N?)

e Can turn off High Pass filter (possibly Notch filter too)
Caveat: If turn off Notch, beware of large amplitudes

ﬁ%i} N~ due to 60 Hz (clipping, finite # of bits)
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SNS

* Sensor Noise Supression g
e Target: Sensor Noise -
Y
Transducer Noise (SQUID .
ransducer Noise (SQUID) D a7 oA
Electronics Noise (FLL, amplifier, A/D) 7|
/

in colloboration with Alain de Cheveigné
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SNS Example

Glitch Removal
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U. Maryland/KIT
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SNS: How it works

Assumption: Every neural source 1s
picked up by multiple sensors

Consequence: Any component observed
on only one sensor 1s artifactual.

Requires spatially dense sensors

Otherwise model-free
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SNS: How it works

Algorithm:

1. Project each channel on subspace formed by other channels.

2. Replace channel by projection.

... et voila!

S = AS

where diag(A) =0
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SNS Example

Neural Responses Unaffected
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SNS Example

Power and PCA Spectra

Power Spectrum

— before SNS
— after SNS

50 100 150
Frequency (Hz)

[/ U. Maryland/KIT
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; PCA Spectrum
10 — before SNS
— after SNS
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principal component

Removes spurious
sensor-specific
dimensions



SNS Example

Glitch Removal
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SNS Summary

e Removes Sensor Noise
e Glitches
* High frequency noise

e No Target Distortion (unless target loads only 1 sensor)

e Allows:
e Cleaner Data
* More usable epochs (no need to discard glitches)

e Reduction of spurious dimensionality
(e.g. for PCA,ICA)
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TSPCA + SNS

e Both “user friendly”
e Can be implemented without parameter fiddling
e Robust even in poor SNR situations (no false minima)

* Implemented in Matlab for KIT “sqd” files
e 700MB =7 minutes on fast desktop computer (2008)
* Only needs to be run once per file
e Transparent—output 1s also sqd file (not Matlab file).

http://www .1sr.umd.edu/Labs/CSSL/simonlab/resources/

@ code by Ray Shantanu & Dan Hertz
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DSS

* Denoising Source Separation
e Target: Physiological Noise
* Requirements:
* Neural sources of signal-of-interest must be
spatially distinct from noise sources
(overlap 1s OK)
e Time courses must be distinguishable
(correlation 1s OK)
e A stimulus-based criterion exists to say what 1s
signal-of-interest vs. noise

Applications in colloboration with Alain de Cheveigné

L Computational Sensorimotor Systems Laboratory
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DSS: How it works

DSS produces a set of spatial filters

K
Se(t)= za’kk’sk (1)
k=1

such that:
* The DSS components, §kf(t), are orthogonal

e Waveforms sum to original waveform

e Powers sum to original power (“partition of power”)

C §k’(t) ordered by decreasing quality: 5,(7) , 5,(¢)

* Spatial filters ordered by decreasing quality: a,,, a,,, etc.

ko
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DSS: How it works

Algorithm:

1. Normalize sensor signals & apply PCA to (spatially whiten).
2. Apply Bias (here: average over trials)
to enhance good directions.
3. Apply PCA to align/order according to maximum bias.
and retain this transform as a rotation matrix.
4. Apply rotation matrix from previous step to Step 1 data(!).
5. Select best components, discard others (“denoising step”).
6. Project back to sensor space.

Bl

L Computational Sensorimotor Systems Laboratory
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DSS: How it works

“Select best components, discard others”

% of power of summed over all components

. 10 | evoked
©° . 0 raw
S 10° | 1o,
B TR
5 1072} '
10_4 1 1 1
0 50 100 150
component
< : o
keep Idiscard
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DSS Example

RMS (over all channels) of response to auditory stimulus

1500 | | | | :
— before DSS
— — after DSS (10 components kept)
= 1000 | .
oC
0 1

-200 0 200 400
time re stimulus onset (ms)

gray band = £+ 2 SD (via bootstrap)

U. Maryland/KIT
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component #

20 k

component #

DSS Example

10

15F
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auditory stimulus, 100 repetitions U. Maryland/KIT
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DSS Example
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DSS Example 4

Spatial Properties of top 3 DSS filters

SNR

Best

2nd

3rd

U. Maryland/KIT
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DSS Example

DSS as replacement for “best sensor” or “best 20” (etc.) sensors

— R —mean
—23D —28D
1Y

X ATR MEG



DSS Example
Spectra of MEG Steady State Response (to dual modulation)
Before DSS (20 Best Channels) First DSS component

o ,
Subjects “
45
// 40
35
30 Frequency (Hz) 30 Frequency (Hz)

U. Maryland/KIT, courtesy of Nai Ding
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DSS Example

Phase coding parameter o (by subject)

Before DSS (20 Best Channels) First DSS component

U. Maryland/KIT, courtesy of Nai Ding

Computational Sensorimotor Systems Laboratory



DSS Summary

 Removes Physiological Noise

 Complementary with:
» Other denoising algorithms (TSPCA, SNS)
e Standard analysis tools (beamforming, dipole source
analysis, etc.)

e Flexible, other bias criteria can be used:
* Bandpassed evoked response (e.g. theta, gamma)
* Induced response(?)
* Any stimulus-dependent representation of response

e Caveats:
 Bias should be robust, so remove outliers temporarily
(e.g.~20% of trials), but fine to use 1n end
* When SNR 1s poor (weak evoked response), may fail to
@@ work, or give component-of-interest as 2nd component.
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Denoising Summary

* Denoising tools presented here are:
e Effective: reduce noise & preserve signals of interest

 Complementary with existing analysis tools
e Available in Matlab

* For users:
 Increase your MEG signal quality
e Relax hardware filtering & loss of
neural signal
e retain slow changes
e retain frequencies near 60 Hz
* no filter-based distortion

* Additional applications:
e BMI/BCI?
* Non-shielded (portable) MEG?

Computational Sensorimotor Systems Laboratory



Thank You

At the monthly meeting of
Squidheads Anonymous
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