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Auditory Rhythms in Speech

• Amplitude 
Modulation (AM)

• Frequency 
Modulation (FM)

• Other 
(e.g. binaural)



Slow Neural Rhythms
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 Slow Rates ⇒ Speech Processing

Cortical Modulation 
Filterbanks

Cortical encoding of 
multiple modulations 
analogous to cochlear 
encoding of multiple 
frequencies?

Juanjuan Xiang (in preparation)



Slow Rate = Noisy Background

Yadong Wang, Nai Ding (in preparation)



Denoising is Critical

Focus: Neural background noise
Example: Data driven spatial filtering, 
e.g. Denoising Source Separation (DSS)
Generates spatial filters & their outputs 
(“components”)

ordered by reproducibility
1st component “maximally 
reproducible” = stimulus driven



Temporal DSS Examples

Most reproducible 
filter & component

Optimally filters out 
trial-to-trial-variable 
signal = neural noise

Filter can be applied 
to other signals, e.g. 
single trials

de Cheveigné & Simon, J. Neurosci. Methods 2008



Spectral DSS Examples

Frequency Spectrum 
before DSS

Frequency Spectrum 
after DSS

Ding & Simon, J. Neurophysiol 2009



Phase DSS Examples

Phase Spread
 before DSS

Phase Spread
 after DSS

Alpha Phase Parameter

Alpha Phase Parameter

by subject

by subject
Ding & Simon, J. Neurophysiol 2009



Challenges Overcome

With careful attention paid to noise 
and variability 
⇒ denoising, cross-validation, etc.

	
 Faint, variable signals can be made 
	
 robust & reliable



Application: Natural Speech

Lengthy natural speech stimuli (2 minutes 
of “The Legend of Sleepy Hollow”).
MEG response cleaned with DSS and 
reverse correlated with stimulus
Robust MEG representation of Speech, 
even after a single presentation: STRF
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Neuronal STRFs

Simon et al. Neural Computation (2007)
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MEG Representation of Speech

Robustly represented by 
Spectro-Temporal 
Response Function (STRF)

Stimulus representation 
dominated by frequencies 
from 500 to 1200 Hz

Response dominated by 
slow frequencies 
< 8 Hz
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Multiple Speakers No Problem

Speech impulse 
responses to speech 
from multiple 
simultaneous speakers

Speech representation 
strongly modulated by 
attention

Single Speaker

Attended Speech

Unattended Speech

Nai Ding (in preparation)



Summary

Slow rhythms critical to neural 
representations of speech
Stimulus generated slow rhythms are 
easily masked by intrinsic rhythms and 
other neural background
 Neural representation of speech and 
other speechlike sounds can be made 
visible and robust



Significance by Frequency
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