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Large-scale analysis of functional MRI data has revealed that brain regions can be grouped into stable “networks”
or communities. In many instances, the communities are characterized as relatively disjoint. Although recent
work indicates that brain regionsmay participate inmultiple communities (for example, hub regions), the extent
of community overlap is poorly understood. To address these issues, here we investigated large-scale brain
networks based on “rest” and task human functional MRI data by employing a mixed-membership Bayesian
model that allows each brain region to belong to all communities simultaneously with varying membership
strengths. The approach allowed us to 1) compare the structure of disjoint and overlapping communities; 2) de-
termine the relationship between functional diversity (how diverse is a region's functional activation repertoire)
and membership diversity (how diverse is a region's affiliation to communities); 3) characterize overlapping
community structure; 4) characterize the degree of non-modularity in brain networks; 5) study the distribution
of “bridges”, including bottleneck and hub bridges. Our findings revealed the existence of dense community over-
lap that was not limited to “special” hubs. Furthermore, the findings revealed important differences between
community organization during rest and during specific task states. Overall, we suggest that dense overlapping
communities are well suited to capture the flexible and task dependent mapping between brain regions and
their functions.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Network analysis of human neuroimaging data has contributed to a
view of brain function in which groups of brain regions participate in
functions rather than brain function relying on just regions operating
in isolation (for influential early ideas, see Mesulam, 1981; Rakic et al.,
1986). Functional MRI data during the so-called “resting state” has
been extensively investigated in order to characterize network structure.
A central finding is that, at rest, brain regions can be grouped into a
relatively small number of stable communities, also called clusters or
subnetworks. For example, Yeo et al. (2011) described a seven-
community parcellation of cortical areas based on a large sample of
participants. Based on anatomical and functional considerations, the
communities were labeled as “visual”, “frontoparietal”, “default”, and
so on.

Much of the work employing modern network methods to study
brain community structure and other network measures makes the
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assumption that each node (that is, brain region) belongs to a single
community — thus, the overall network is partitioned into disjoint
sets of clusters. However, the importance of understanding and charac-
terizing overlapping structure has been discussed for some time in
many disciplines, including sociology (Wasserman and Faust, 1994)
and biology (Gavin et al., 2002); for example, biologists exploring
protein interactions have found that a substantial fraction of proteins in-
teract with several communities at the same time (Gavin et al., 2002).
As nicely summarized by Palla et al. (2005, p. 814): “actual networks
are made of interwoven sets of overlapping communities”.

Large-scale analysis of functional MRI data indicates that brain
networks are also overlapping. This is indicated, for example, by
Independent Component Analysis (ICA) and other methods that allow
community overlap (Smith et al., 2012). Indeed, there is increasing
realization that brain regions may belong to several brain communities
simultaneously (Cocchi et al., 2013; Cole et al., 2013; Pessoa, 2014; see
also Hilgetag et al., 1996; Mesulam, 1998). It is still unclear, however,
whether network overlap is sparse or dense (Fig. 1). In the former
case, some key regionswork as hubs that participate flexibly inmultiple
communities. In this scenario, network overlap is relatively limited and
may be a property mainly of specific parts of the brain (say, prefrontal
cortex; see Miller and Cohen, 2001). In the latter case, network overlap
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Fig. 1.Community organization in the brain. (A) Standard communities are disjoint (inset:
colors indicate separate communities), as illustrated via three types of representation. The
representation on the right corresponds to a schematic correlation matrix.
(B) Overlapping communities are interdigitated, such that brain regions belong to
multiple communities simultaneously (inset: community overlap shown on the brain
indicated by intersection colors).

Fig. 2.Overlapping communities andmembership values. Each brain region affiliates with
each community with varying strengths that are captured by the membership value.
These probability-like values are between 0 and 1 and sum to 1 (for each region of
interest, or ROI).
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is extensive andmany (possibly most) brain regions participate inmul-
tiple communities. For example, Yeo et al. (2014) reported that 44% of
the vertices studied (away from clustering boundaries) participated in
multiple networks.

One reason regions may belong to (or affiliate with) multiple
communities is that they may participate in different “region
assemblies” depending on task demands.Whereas evidence for regions
with “flexible functional connectivity patterns” in frontal and parietal
cortex has been recently described (Cole et al., 2013), the extent of
such multiple-community participation, and its spatial distribution in
the brain remains poorly understood. Moreover, the relationship of
flexible affiliation and functional diversity (that is, the spectrum of
tasks a region may participate in; see Anderson et al., 2013) is not
understood.

At least since the work by Guimera and Amaral (2005a) and
Guimera and Amaral, (2005b) there has been increased appreciation
that particularly well-connected nodes, often called hubs, can be
grouped into several distinct sub-types: provincial hubs (well-connect-
ed nodes with almost all of their links within a single community), con-
nector hubs (well-connected nodes with at least half of their links
within a community), and kinless hubs (hubs with fewer than half of
their links within a community). The different hub sub-types are useful
for understanding the general functional organization of networks be-
cause each of the defining connectivity patterns lends itself to a “univer-
sal role” that does not depend on the type of network being studied
(social, technological, or biological). By using overlapping communities,
hub sub-types can be naturally defined by characterizing each node's
bridgeness (Nepusz et al., 2008), namely, the ability to participate with
multiple communities simultaneously and “bridge” them together.
Bridges are important because they have the potential to spread signals
across multiple communities, thereby performing important roles in
distributed processing.

The goals of the present study were several-fold. First, we sought to
characterize the overlapping structure of brain communities during rest
by using a state-of-the-art mixed-membership algorithm (Gopalan and
Blei, 2013; see also Airoldi et al., 2014, 2008; Lancichinetti et al.,
2009). In particular, one of our goals was to quantify how much
“information” is lost when large-scale networks are treated as disjoint
compared to when overlapping structure is characterized. Standard,
disjoint clustering assigns membership values of 0 or 1 (all or none),
and in so doing dichotomizesmeasures thatmay be informative. In con-
trast, when overlapping structure is determined, a node's participation
is assigned across all communities, though with varying strengths; the
strengths are summarized by themembership values (Fig. 2). Specifical-
ly, in the framework adopted, each node has a probability-like
membership value associated with each of the existing communities.
This community membership vector specifies a node's affiliation to all
communities considered, with membership values between 0 and 1
(and summing to 1), with entries close to 1 indicating membership to
essentially one community, and intermediate values indicating
membership to multiple communities.

Second,we sought to investigate the relationship between functional
diversity and communitymembership properties. Brain regions differ in
terms of their functional diversity, namely, the repertoire of functions
that engage them (Passingham et al., 2002; Anderson et al., 2013).
Some regions are engaged by a wide variety of tasks (they have high
functional diversity), whereas other regions are more narrowly tuned
and are engaged by a limited range of paradigms (they have low
functional diversity). Here, we asked the following question: Is func-
tional diversity related to how brain regions affiliate with other regions
in the absence of a task? In otherwords, is a region's functional diversity
related to its membership values? To estimate a region's functional
diversity, we employed the BrainMap database (Laird et al., 2005),
which collates activation results across thousands of publications in
the literature and organizes them in terms of a task taxonomy spanning
perception, action, cognition, and emotion.

Third, we wished to characterize how network structure during rest
is potentially altered by task execution. This is important because
whereas the large-scale structure of brain networks at rest have been
studied extensively, less is known about the organization during task
performance. Critically, it is at times assumed that functional connectiv-
ity at rest is affected in minor ways by tasks (Cole et al., 2014). In this
view, the activity covariation at rest is only mildly influenced by task
execution. While some studies have indeed provided evidence in favor
of this idea, an alternative proposal is that tasks alter patterns of
functional connectivity more substantially (Buckner et al., 2013).

Fourth, our objective was to use the mixed-membership model to
measure the “bridgeness” of each region and combine it with other
network measures to extend our understanding of “universal roles”
and identify key information processing nodes in the brain.
Furthermore, we wished to determine how both hub and bridge prop-
erties changed during task execution relative to rest.
2. Materials and methods

2.1. Dataset

The structural and functional MRI data for this study were obtained
from the Human Connectome Project (HCP; Van Essen et al., 2013)
dataset (N=100) as accessed in June 2014. For completeness, we brief-
ly describe the main aspects of the HCP data (for details, see Glasser
et al., 2013; Smith et al., 2013; Van Essen et al., 2013).
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Data were acquired on a Siemens Skyra 3 T scanner using a standard
32-channel head coil. Functional data were collected using a multiband
scanning protocol (multiband factor of 8) that allowed acquisition at
higher temporal (TR= 720ms; TE= 33.1 ms; FA: 52°) and spatial res-
olution (2 mm isotropic voxels in 72 slices; FOV = 208 × 180 mm).
Here, we employed HCP's so-called “minimally processed” functional
data (Glasser et al., 2013), which included the following preprocessing
steps: correction of spatial distortions, motion correction, functional to
structural data alignment, biasfield correction, and intensity normaliza-
tion. Cortical data were mapped to the surface (using the Conte69, 32k
standard mesh), and subcortical data were analyzed volumetrically.
Surface data were spatially smoothed within the surface with a 2 mm
kernel. For the resting-state data, HCP pipeline uses ICA to remove spa-
tiotemporal components that purportedly corresponded to non-neural
signals; the resulting data are referred to as the “ICA-fixed” dataset
(Salimi-Khorshidi et al., 2014; Smith et al., 2013).

2.1.1. Resting-state data
Each run of resting-state data contained 1200 volumes (14 min and

33 s). Participants were instructed to look at a fixation crosshair for the
duration of the run with their eyes open. We employed data from two
runs acquired on each participants' first visit. The only preprocessing
step applied beyond the HCP ICA-fixed pipeline was to perform tempo-
ral filtering (between 0.01 and 0.08 Hz) via the 3dBandpass program of
the AFNI package (Cox, 1996).

2.1.2. Working memory task data
During the workingmemory task, participants performed an n-back

memory task based on a series of centrally present pictures of places,
tools, faces and non-mutilated body parts with no nudity. Participants
performed two runs of the task, each of which contained four blocks
of a 0-back memory task, four blocks of a 2-back memory task, and
four blocks of fixation. On each trial, a stimulus was presented for 2 s,
followed by a 500-ms interval. Here, we restricted our analysis to the
2-back condition. Each task block lasted 25 s; to account for the
hemodynamic delay, we employed volumes from 10 to 25 s after
block onset. In total, we employed 120 s (167 volumes) of data for
each participant (2 runs × 4 blocks/run × 15 s/block). The only process-
ing step applied beyond the HCP pipeline was to regress out (via the
3dDeconvolve program of the AFNI package) 12 motion-related vari-
ables: 6 motion parameters estimated from the rigid-body transforma-
tion to the reference image acquired at the beginning of the scan and
their temporal derivatives (as provided with the HCP data).

2.1.3. Emotion task data
The emotion task was based on the original paradigm developed by

Hariri et al. (2000). During each block, participants decided which of
two faces (or shapes) on the screen matched the face (or shape) placed
above. On each trial, stimuli appeared for 2 s followed by a one second
interval. Here, we restricted our analysis to the emotion condition,
during which angry or fearful faces were displayed. Each task block
lasted 21 s; to account for the hemodynamic delay, we employed
volumes from 10 to 21 s after block onset. In total, we employed 66 s
(92 volumes) of data for each participant (2 runs × 3 blocks/
run × 11 s/block). As in the case of the working memory task, the only
processing step applied beyond the HCP pipeline was to regress out of
the estimated motion parameters.

2.1.4. Data censoring
Because head motion can lead to spurious patterns of co-activation,

it is important to preprocess and censor the data so as to minimize po-
tential artifacts. Thus,we calculated the “temporal derivative of variance
over voxels” (DVARs; Power et al., 2012) to gauge the rate of change in
the functional MRI signal at each time sample. If DVARs exceeded a
threshold of 0.35 at a time point, the data pointwas removed; for work-
ing memory 5.48% of the data were removed, and for emotion 4.32% of
the data were removed. This procedure was applied to task data only
because the ICA-fixed preprocessed resting-state data have motion
parameters “aggressively regressed out” already (Smith et al., 2013).
See Supplementary Material Section S.2.1 for further discussion of the
impact of preprocessing steps on resting-state and task data.
2.1.5. Participant censoring
Data from six participants contained time pointswith DVARs greater

than 0.35 in over half of their blocks in working memory or emotion
datasets. We therefore dropped these participants (including resting
state) from further analysis. Thus, the final analysis used data from 94
participants.
2.2. Regions of interest

Cortical regions of interest (ROIs) were defined to cover the cortex,
yet be small enough to minimize the mixing of signals from adjacent
but (potentially) functionally heterogeneous regions. k-Means (with
“city block” or L1 distance; 1000 iterations; Duda et al., 2012) was
used to cluster each cortical hemisphere into 500 target regions based
on their xyz coordinates. Thus, ROIs were defined based on their spatial
coordinates on the cortical mesh, not functional data. Because the
medial surface of the hemisphere is naturally undefined for parts that
are effectively subcortical, clusters with xyz coordinates in those loca-
tions (i.e., corresponding to subcortical locations) were not considered.
Therefore, a total of 941 ROIs were defined (471 on the right
hemisphere and 470 on the left hemisphere). The resulting clusters
were further “eroded” so as to avoid ROIs from abutting one another
to minimize signals from a given region from contributing to neighbor-
ing ROIs (on average, ROIs comprised 28 2 × 2 × 2mm voxels). Subcor-
tical regions of interest were defined anatomically based on Freesurfer's
subcortical segmentation (Fischl, 2012). Each subcortical structure was
considered as one region, resulting in a total 19 subcortical regions (9 in
each hemisphere and one brainstem ROI), including the cerebellum.
2.3. Functional connectivity

Functional connectivity between every pair of regions was calculat-
ed using the Pearson correlation of regions' mean time series, resulting
in a 960-by-960 connectivitymatrix (for each participant and condition
[rest, working memory, emotion]). Here, we followed the strategy by
Yeo et al. (2011), Power et al. (2012), and Cole et al. (2013) and
binarized each participant's connectivity matrix by setting the top 10%
strongest correlations to 1 and all other entries of the correlationmatrix
to 0. This strategy has proved successful in producing stable community
results. The binarized connectivity matrices were averaged across
participants and binarized a second time; again, the top 10% strongest
connections were set to 1 and all other values were set to 0. The latter
binarization was used so that we could apply the Bayesian mixed-
membership model (see below) to partition the correlation matrix,
which requires a binary correlationmatrix. Note that the two-step bina-
rization used here is not typically employed by other investigators, as
some prefer to threshold at the subject level and others at the group
level; our approach simply combined subject-level and group-level
thresholding (the present approach is nearly indistinguishable from
using a single thresholding step at the group level; difference in
only ~0.8% of the edges).

Note, furthermore, that negative correlations were converted to
zero. While this practice is widespread in analysis of brain data, there
is also increasing realization of the potential importance of negative
weights (Rubinov and Sporns, 2011). Note, however, that our
thresholdingmethodwould also eliminate all negativeweights because
thesewere relativelyweak links (over 99% of the negative edgeswere in
the bottom 20th percentile of correlation strengths).
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2.4. Detecting disjoint communities

Clustering with k-means as implemented in Statistics and Machine
Learning in MATLABR2012b (with “city block” or L1 distance; 1000
iterations) was applied to the averaged adjacency matrix to identify k
disjoint communities. Although k-means is a very simple clustering
method, we employed it here for consistency with the study by Yeo
et al. (2011), whose results were based on a large number of
participants.

2.5. Detecting overlapping communities

The approach to detecting overlapping communities adopted here
was originally based on the mixed-membership stochastic blocks
model (Airoldi et al., 2008) within the context of stochastic variational
inference (Hoffman et al., 2013). The specific algorithm we employed
was developed by Gopalan and Blei (Gopalan and Blei, 2013), as imple-
mented in https://github.com/premgopalan/svinet.

Briefly, the algorithm proceeds as follows. Initially, a membership
matrix is estimated based on the adjacency matrix and the number of
communities to extract, K. The membership matrix has size NROIs-by-
K, where NROIs is the number of ROIs. Each column of the membership
matrix defines a community. Each row of the membership matrix is a
membership vector, πi=[πi ,1,πi ,2,… ,πi ,K], that indicates the extent to
which a region i belongs to each of the K communities. Importantly,
the sum of the membership values along a row sum to 1. Formally, ele-
ment πi ,k in themembershipmatrix is themembership value of region i

to the k-th community and, for every region i, ∑K
k¼1 πi;k ¼ 1 (Fig. 2).

2.5.1. Mixed-membership algorithm
For completeness, a more complete description of the algorithm is

provided here. Themodel byGopalan and Blei (2013) can be considered
to belong to a subclass of mixed-membership stochastic block models
(Airoldi et al., 2008) that assumes assortativity (see below).

To understand themodel, let us consider it from a generative stand-
point (i.e., as an engine to generate data according to certain distribu-
tional assumptions). To generate a network, the model considers all
pairs of nodes. An essential component of the model is that it imple-
ments assortative clustering: nodes with similar membership vectors
are more likely to be connected to each other. To capture assortativity,
for each node pair (i, j), the model specifies community indicator
vectors zi→ j and zi← j. Community vectors have dimensionality 1 × K
and have all entries set to zero, except for the entry that equals 1 and in-
dicates which community the node is likely to belong to. If both indica-
tors “point” to the same community (i.e., are 1 for the same entry of the
vector), the model connects nodes i and j with higher probability; oth-
erwise they are likely to be unconnected.

Each community is associatedwith a community strength, βk, which
captures how connected its members are. The probability that two
nodes are connected in the model is governed by the similarity of
their community membership vectors and the strength of their shared
communities (the latter via the parameters βk).

Formally, the model assumes the following generative model to
definenetworks (Figure S1). The notation “~” stands for “distributed as”.

1) For each community k, sample community strength βk ∼Beta(η)
2) For each node i, sample communitymembership vector πi ∼Dirichlet(α)
3) For each pair of nodes i and j, where ib j:

a. Sample community indicator zi→j∼Multinomial(πi,1)
b. Sample community indicator zi←j∼Multinomial(πj,1)
c. Sample connection yij ∼Bernoulli(r), where:

From the complementary standpoint of parameter estimation, given
an observed network (the input to the algorithm), the model defines a
posterior distribution that gives a decomposition of the nodes into K
overlapping communities. Formally, the algorithm computes the poste-
rior distribution, p(π,z,β |y,α,η), so that the community membership
vectors can be estimated — these are the objects that define the
membership values for every node, which define the overlapping struc-
ture of the overall graph. Exact inference of this posterior distribution is
computationally intractable, so stochastic variational inference
(Hoffman et al., 2013) is used to approximately estimate the posterior
in an efficient iterativeway (such that estimating the posterior becomes
an optimization problem). Importantly, the algorithm is fast and scal-
able. Indeed, the method has been used to study a network of 575,000
scientific articles (nodes) from the arXiv preprint server and a network
of 3,700,000 US patents (nodes) (Gopalan and Blei, 2013).

Because the algorithm is based on a probabilistic generative model,
the values of the membership values depend on the initialization of
the random “seed”. Therefore, we ran the algorithm 100 times with dif-
ferent random initialization seeds. The average membership value
across the 100 initializations was considered as the membership value
for that community. Of course, across the 100 “runs”, the columns of
the membership matrix (i.e., the communities) may be “shuffled” (for
example, community 1 in one iterationmay be community 5 in another
iteration). Therefore, prior to averaging across the 100 initializations, a
simple graph matching procedure was used to reorder the columns
(i.e., communities). To do so, the 100 K different communities were
clustered into K groups using k-means clustering and ordered accord-
ingly (for computational expediency, we used the algorithm's version
as implemented in Python's scikit-learn package in http://scikit-learn.
org/stable/ which uses Euclidean or L2 distance; 1000 iterations). Note
that this step does not determine overlapping community structure,
and simply matches community labels. We also tested other matching
methods, for instance, using normalized mutual information, and
these generated nearly identical results. In essence, the Bayesian
mixed-membership model was fairly robust to seed initialization, lead-
ing to stable matching results. Importantly, by calculating the member-
ship matrix based on 100 runs of the algorithm, we are able to mitigate
the “degeneracy” problem (Good et al., 2010), namely, the fact that
multiple community assignments lead to similar model fits (for further
discussion, see Fortunato, 2010; Pessoa, 2014).

2.5.2. Choosing the number of communities
To determine the number of communities, for each condition, the

Bayesian mixed-membership model fit to the data was computed for
different numbers of communities, ranging between 2 and 25. To hold
the value of k constant across all bootstrapping iterations, we computed
themodel fit to the data by considering the entire original dataset (N=
94). Figure S2 depicts the model fit for rest, workingmemory and emo-
tion tasks as a function of k. For the rest condition, we observed a slight
peak at k = 6 (Figure S2). And given that the fit curves were fairly flat
between 4 and 6 communities for both the working memory and the
emotion tasks, we fixed k=6 across conditions to facilitate comparison
between rest and task conditions. We note, however, that this does not
imply that the value is “correct”, as choices of k between 4 and 6 (across
datasets)were quite similar; in addition, these values of k are specific to
the model employed here, and other models could partition the data
optimally with a different number of communities.

2.6. Reproducibility and reliability of the results

Instead of splitting the data into “discovery” and “replication”
datasets, we applied a more computationally intensive strategy, which
was possible given that the total sample was of intermediate size only
(N = 94). We applied bootstrapping (Efron, 1979) to our data by
randomly resampling subjects (with replacement) for a total of 5000
iterations. Overlapping network analysis was performed independently
for each of the 5000 iterations (each sample of 94 participants defined
its own functional connectivity matrix).

https://github.com/premgopalan/svinet
http://scikitearn.org/stable/
http://scikitearn.org/stable/
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By estimating overlapping communities for 5000 randomly
resampled datasets, we generated 5000 sets of results, which allowed
us to estimate median results as well as determine confidence intervals
for them. To match community labels across iterations, we employed
the same method described above, namely, k-means clustering.

The bootstrapping samples were also employed to determine nodes
with membership values that were reliably greater than zero. To do so,
to determine its lower bound, we computed the 2.5th percentile of the
membership values for a given community (Figure S3). We then sorted
the regions based on their 2.5th percentile membership value, and
found the “elbow” of the 2.5th percentile “curve” (the “elbow” was
defined as the point at maximal distance from the line passing from
the first to the last point of the curve). Importantly, our results were
robust to different choices of threshold.

2.7. Functional diversity

Previously, we studied the functional diversity of brain regions,
namely, the repertoire of tasks that regions are engaged in, by utilizing
repositories of human neuroimaging data (Anderson et al., 2013).
Following a similar approach, here we used task activations from the
BrainMap database (Laird et al., 2005; http://www.brainmap.org) to
estimate functional diversity for each region of interest. We employed
activation coordinates from experiments in 47 task domains spanning
perception, action, cognition, and emotion in healthy subjects (total of
124,211 activation coordinates, as accessed on November 12, 2014).
Activations from clinical populations were not considered.

Details of our approach can be obtained in the original report
(Anderson et al., 2013). Here, we briefly outline themain steps. The ini-
tial steps of data analysis were performed volumetrically (that is,
voxelwise) because of the meta-analytic nature of the data. Initially, a
“domain-frequency map” was computed by tallying the number of
times an activation was observed for each voxel (2 mm isotropic
voxels), for each of the 47 task domains. The 47mapswere then blurred
with a 6-mm cube-shaped kernel, and normalized to have a sum equal
to one across domains (per voxel). Thus, the values at each voxel in each
domain-frequency map ranged between 0 and 1.

To compute functional diversity, we employed Shannon's (1948)
entropy measure, which is used across many disciplines (e.g., biology,
economics) as ameasure of “diversity” (e.g., Magurran, 2004). Formally,

Hi ¼ −∑D
j¼1 pi; jlnpi; j

where Hi is the functional diversity of the i-th region, pi , j is the
frequency of activation in the database in the j-th domain for that re-
gion, andD=47 is the number of task domains. Thus,maximal diversity
occurs when the region belongs equally to all communities, namely,
pi ,j=1/D.

The final voxelwise diversity map was then mapped to the surface
(by using HCP's Workbench volume-to-surface-mapping function;
Marcus et al., 2011). For each surface ROI, the pi , j values were defined
as the average activation frequency across the vertices associated with
the ROI. For subcortical regions, no mapping was necessary and pi , j
values were defined as the average activation frequency across the
voxels within the anatomical ROI.

2.8. Membership diversity

We computed the diversity of membership values for each ROI by
employing Shannon's (1948) entropy measure, in a manner that was
analogous to how we computed functional diversity. But note that
membership diversitymeasures the extent to which a region has diverse
membership values (one value per community; see Fig. 2); functional
diversity (previous section) measures the extent to which a region
activates to tasks across domains.
In termsof the entropy equation (previous section), if pi ,j is the prob-
ability that the i-th region belongs to the j-th community, and D is the
number of communities, Hi is the membership diversity for region i.
Thus, maximal membership diversity occurs when the region belongs
equally to all communities. Because each region hasmembership values
πi ,j (i indexes ROIs, j indexes communities) that take on values between
0 to 1, and membership values for each region sum to 1, we can use the
πi ,j as “probabilities” pi ,j in the formula above. For eachROI,membership
diversity was calculated for all conditions, separately (rest, working
memory, and emotion).

2.9. Degree

Degree of a region is defined as the number of links attaching it to
other regions. Because the mixed-membership utilized a binarized
graph, the degree of i-th region was computed as the sum of the values
in the i-th row of the binary adjacency matrix minus 1.

2.10. Modularity of overlapping networks

Network modularity is used in the literature to indicate how a net-
work can be subdivided into communities. For example, in themodular-
ity measure defined by Newman for disjoint communities (Newman,
2006), if two regions are connected and belong to the same community,
modularity increases, and if two regions are connected but belong to
two different communities, modularity decreases. Several modularity
methods have been defined for overlapping communities, too (Xie,
2013). Here, based on Chen et al. (2010), we extended modularity to
the case of the mixed-membership model we employed as follows:

Qc ¼
1
2m

X
c

X
i; j∈c

Ai; j−
kik j

2m

� �
πi;cπ j;c

where m is the total number of links in the graph, Ai , j is the edge
between node i and j (1 if edge present, 0 otherwise), ki is the degree
of node i (based on the binarized group graph), and πi ,c is the member-
ship value of node i in community c. This extension of modularity is
straightforward. The part of the equation prior to the product of the
membership values, πi ,cπj ,c, implements the intuitive description of
standard (disjoint) modularity provided above; the product of the
membership values incorporates the “strengths” into the original for-
mulation (which essentially consider membership as a binary value).

2.11. Defining bridges

To identify ROIs acting as bridges, first we normalized both degree
and membership diversity to have values between 0 and 1. Bottleneck
bridges are regions with high membership diversity and low degree.
Hub bridges are regions with high membership diversity and high
degree. Thus, bridgeness scores can be defined as:

B ¼ z 1−degreeð Þ �membership diversityð Þ for bottleneck bridges
z degree�membership diversityð Þ for hub bridges

�

and computed for each bootstrapping iteration, when degree and
membership diversity for each iteration are normalized between 0
and 1. z(∙) computes the z score of the argument.

Power et al. (2013) argued that studies that use degree to identify
hubs in resting-state functional networks are problematic because the
identified hubs may be due to community size rather than their pur-
ported roles in “global” information processing. In otherwords, if degree
is the only parameter used to determine if a region is a “hub”, the usage
is potentially problematic. Note, however, that here the information
processing role of nodes was also based on membership diversity.
Thus, whenmembership diversity is low (say, a region is mostly affiliat-
ing with one or two communities), the bridgeness score will be low. In
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Fig. 3. Disjoint communities (DC) detected during rest. Each row depicts one of the six
disjoint communities extracted with k-means. Cortical and subcortical regions belonging
to each of community are colored in red.

Fig. 5. Cosine similarity between disjoint (DC1–DC6) and overlapping (OC1–OC6)
communities during rest. The matrix displays the median cosine similarity between
community pairs across 5000 iterations. Given that community membership vectors do
not contain negative values, the cosine similarity scores range from zero (orthogonal) to
one (identical). Side and top insets represent similarity scores as bar plots across rows
and columns, respectively.
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essence, therefore, degree played a role in labeling bridges as “hub brid-
ges” or “bottleneck bridges”, which indicates if a bridge between com-
munities is linked to multiple or a few other regions, respectively. In
any case, further analyses revealed no evidence of a systematic effect
of community size on node taxonomy (see Supplementary Material
Section S.2.2).

2.12. Cortical and subcortical visualization

To visualize cortical results we used SUMA ((Saad and Reynolds,
2012); http://afni.nimh.nih.gov/afni/suma), and to visualize the subcor-
tical volumes we utilized the volume shapes in the CANlab
3dHeadUtility MATLAB toolbox by ((Wager et al., 2008); https://
github.com/canlab/CanlabCore). To aid visualization, the right putamen
Fig. 4.Overlapping communities (OC) detectedduring rest. Each rowdepicts one of the six
overlapping communities extracted with the mixed-membership model. The color of
cortical and subcortical regions reflects the median membership value of each region to
each community across 5000 iterations. Membership values are thresholded at 0.1 for
illustration.
is plotted behind other subcortical regions of the left hemisphere, and
the left putamen is plotted behind other subcortical regions of the
right hemisphere.
3. Results

Analysis of functional MRI data was performed on a sample of 100
unrelated subjects from the Human Connectome Project (Van Essen
et al., 2013). We removed data from six participants due to scanning ar-
tifacts (Materials and methods).

The cortical surface and subcortical volumes were subdivided into
960 regions. Whole-brain functional connectivity was measured for
each participant by calculating the Pearson correlation between the
time series from every pair of regions in each of three conditions (all
from the Human Connectome Project): rest,working memory, and emo-
tion. To decompose the functional connectivity matrix into a set of dis-
joint communities, we employed standard k-means (Materials and
methods), which identifies clusters of regions such that each region be-
longs to a single community.

For overlapping clustering, we employed a Bayesian mixed-
membership model (Gopalan and Blei, 2013; Materials and methods)
which identifies sets of regions such that each node can belong to mul-
tiple communities. Themixed-membershipmodel assigns a continuous,
probability-like membership value for each region of each community
(Fig. 2). Thus, a region belonging to a single community has a member-
ship value of one for that community and membership values of zero
elsewhere; a region belonging to multiple communities has intermedi-
ate membership values (between 0 and 1) across communities. To be
able to assess the reliability of the results, the non-discarded datasets
(N = 94) were analyzed by a bootstrapping procedure (Materials and
methods) that allowed us to estimate themedian of the parameter esti-
mates reported below, as well as determine confidence intervals for the
parameters.

In the next two sections, we report on the overlapping network
structure as revealed by resting-state data. The subsequent sections
then compare properties of overlapping networks of resting-state and
task data. Both disjoint and overlapping clustering algorithms require
the specification of the number of communities, K, to be extracted. We
report here results based on K equal six for all conditions, which was
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Fig. 6. Frequency histograms of membership values for each of the six overlapping
communities during rest. Each histogram depicts the median value in each bin for that
community across 5000 iterations (error bars show the of 25th–75th percentile range).
The colors of the bars correspond to the range of membership values shown in the brain
insets.

Fig. 7. Overlapping communities (WM) detected during the working memory task. Each
row depicts one of the six overlapping communities extracted with the mixed-
membership model. The color of cortical and subcortical regions reflects the median
membership value of each region to each community across 5000 iterations.
Membership values are thresholded at 0.1 for illustration.
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determined by evaluating the model fit to the data (Materials and
methods; Figure S2).

3.1. Comparing disjoint and overlapping communities at rest

The six communities extracted with disjoint clustering (k-means;
Fig. 3) corresponded closely to previously identified large-scale commu-
nities (Yeo et al., 2011); but note that unlike most previous studies, we
included subcortical regions, too. Here, we avoid using semantic labels
for communities (for example, “visual”, “frontoparietal”, and “default”),
and simply refer to the disjoint communities as DC1 through DC6.

The six overlapping communities obtained with the Bayesian mixed-
membership model, including membership values for every region, are
depicted in Fig. 4. The correspondence between each pair of disjoint and
overlapping communities was measured using cosine similarity (i.e., the
normalized dot-product). Four of the disjoint communities exhibited
a fairly high degree of similarity with a single overlapping communi-
ty (Fig. 5). Two disjoint communities, DC5 and DC6, exhibited a less
clear correspondence with a unique overlapping community: DC5
was similar to both OC5 and OC6; DC6 did not correspond strongly
to any of the overlapping communities. From the perspective of
the overlapping communities, OC5 corresponded most strongly
with DC5, which is a network that includes fronto-parietal regions
important for attention and executive function. Interestingly, OC5
was least similar to DC3, the network that is commonly denoted as
“resting state” or “task negative”.

To characterize the finer structure of the overlapping communities,
we examined the distribution of membership values for each of the
six communities (Fig. 6). Communities OC1 through OC3 displayed
peaks at the largest bin values, but also considerable probability mass
below the bin with largest membership values. Interestingly, OC3, the
community most similar to the standard task-negative network,
showed the most skewed distribution, and the only community with a
clear peak close to values of 1. In contrast to the increasing pattern of
OC1–3, communities OC4 through OC6 showed distinct shapes. OC4
displayed a distribution of values that was relatively uniform (except
for the first and last bins); both OC5 and OC6 exhibited negative skew,
with OC5 showing particularly strong skew.

3.2. Relationship between functional diversity and membership diversity

Brain regions differ in terms of their functional diversity, namely, the
repertoire of functions they are engaged in. By considering large
datasets of neuroimaging studies (Anderson et al., 2013), we showed
that some regions are engaged by a wide variety of tasks (they have
high functional diversity), whereas other regions are more narrowly
tuned and are engaged by a limited range of paradigms (they have
low functional diversity). Here, we asked the following question: Is
functional diversity related to how brain regions affiliate with other
regions in the absence of a task (resting state)?

To study this question, we defined a new measure for overlapping
communities, the membership diversity, which captures the extent to
which a node participates in multiple communities. A node's member-
ship diversitywas quantified by the Shannonentropy of themembership
values (Materials and methods). Intuitively, maximal diversity occurs
when a region participates equally across all communities; naturally,
minimal diversity occurs when a region participates in one and only
one community. Separately, functional diversity was calculated for
each region using our previous methods (Anderson et al., 2013) and
based on neuroimaging data in the BrainMap database (Laird et al.,
2005; see Materials and methods; Figure S4). Robust regression
revealed that functional diversity was positively related to membership
diversity, indicating that regions activated by a wide variety of tasks
(that is, functionally diverse) tended to participate in more com-
munities at rest (median slope: 0.27, 95% confidence interval:
0.22–0.32).

3.3. Comparing overlapping communities during rest and task

Although network structure has been extensively studied during
taskless states, less is known during task execution. In particular, how



Fig. 8.Overlapping communities (EM) detected during the emotion task. Each row depicts
one of the six overlapping communities extracted with the mixed-membership model.
The color of cortical and subcortical regions reflects the median membership value of
each region to each community across 5000 iterations. Membership values are
thresholded at 0.1 for illustration.
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network structure is potentially altered by tasks is actively debated. To
address this question, we investigated the overlapping network struc-
ture of functional MRI data collected duringworkingmemory and emo-
tion tasks. Because our goal was to compare network properties
during task execution to those found at rest, we did not employ
the baseline tasks conditions; instead we used data for the active
conditions alone (working memory: 2-back condition; emotion:
matching emotional faces; see Materials and methods). To aid in
the comparison with the results at rest, a value of K = 6 was used
for both cases.

Overlapping communities are shown in Fig. 7 for working memory
(WM1–6) and Fig. 8 for emotion (EM1–6) (for additional analyses of
Fig. 9. Cosine similarity between overlapping communities at rest (OC1–OC6) and during
the working memory task (WM1–WM6). The matrix displays the median cosine
similarity between each WM and OC network across 5000 iterations. Given that the
community membership vectors do not contain negative values, the cosine similarity
scores range from zero (orthogonal) to one (identical). Side and top insets represent sim-
ilarity scores as bar plots across rows and columns, respectively.
the working memory dataset, see Supplementary Material
Section S.2.3). Visually, several of the communities during the two
tasks resembled communities found at rest. However, careful inspection
of the similaritymatrices (Figs. 9 and 10) revealed that tasks altered the
observed networks in important ways, too. Consider, for example, the
working memory task. From the standpoint of the communities ob-
served at rest, only OC2 displayed a substantial match to a single
community during working memory (WM2), as evidenced by the
bar plots (see insets). Likewise, for the emotion task, again, only
OC1–2 displayed a substantial match to a single community during
emotion (EM1–2, respectively).

Examination of the distribution of membership values for individual
communities provides further insight into overlapping information. For
the working memory task (Fig. 11), most communities exhibited small,
intermediate, and large membership values. Community WM2 was the
only one that showed a peak at the binwith largest values, and commu-
nities WM4–6 were negatively skewed. For the emotion task (Fig. 12),
no community exhibited a peak near 1, and communities EM4–6
showed negative skew.
3.4. Modularity of overlapping networks

Further insight into the changes in network structure linked to tasks
states can be gained by studyingmodularity. Conceptualizing networks
as inherently overlapping structures highlights their non-modular
structure. Nevertheless, modularity is not all-or-none, so quantifying
it provides a measure of the extent to which signals potentially can
flow between communities. We defined a measure of overlapping com-
munity modularity based on membership values (Materials and
methods), and a modularity score was computed for each community
during the rest, working memory, and emotion conditions. Modularity
(Fig. 13) was clearly highest during resting state (mean and standard
deviation: 0.318±0.016), and decreased for both tasks (workingmem-
ory: 0.183 ± 0.018; emotion: 0.211 ± 0.015) for which modularity
scores were fairly similar. Importantly, all modularity scores of individ-
ual communities during working memory and emotion were lower
than values observed at rest, showing that the reductionwas not driven
by changes to one or a just a few communities. Additional analyses in
Fig. 10.Cosine similarity between overlapping communities at rest (OC1–OC6) andduring
the emotion task (EM1–EM6). The matrix displays the median cosine similarity between
each EM and OC network across 5000 iterations. Given that the community membership
vectors do not contain negative values, the cosine similarity scores range from zero (or-
thogonal) to one (identical). Side and top insets represent similarity scores as bar plots
across rows and columns, respectively.



Fig. 11. Frequency histograms of membership values for each of the six overlapping
communities during the working memory task. Each histogram depicts the median
value in each bin for that community across 5000 iterations (error bars show the of
25th–75th percentile range). The colors of the bars correspond to the range of
membership values shown in the brain insets.

Fig. 12. Frequency histograms of membership values for each of the six overlapping
communities during the emotion task. Each histogram depicts the median value in each
bin for that community across 5000 iterations (error bars show the of 25th–75th
percentile range). The colors of the bars correspond to the range of membership values
shown in the brain insets.
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Supplementary Material (Section S.2.4) show that these findings also
hold when the number of communities, K, varies across conditions.

3.5. Node taxonomy: hubs and bridges during rest and task conditions

An additional goal of this study was to understand how regions po-
tentially participate in “signal communication” so as to better character-
ize the overlapping network structure of brain networks. More broadly,
characterizing node properties within the overall network topology can
help elucidate the information processing roles played by nodes
(Guimera and Amaral, 2005a, Guimera and Nunes Amaral, 2005b).
The mixed-membership approach employed here is useful because
each node is characterized with a set of probability-like values that
characterize its participation across all networks simultaneously.

To characterize a node's functional role, we employed the member-
ship diversity measure for overlapping communities described above,
which captures the extent towhich a node participates inmultiple com-
munities. Our reasoning was that nodes with highmembership diversity
may function as important “bridges” by facilitating communication
acrossmultiple communities. As stated previously, a node'smembership
diversity was quantified by the Shannon entropy of its membership
values (Materials and methods). We also considered the degree of a
node, a standard graph measure that indicates how highly connected
the node is to all other nodes (Materials and methods).

Degree and membership diversity capture different aspects of node
function. For example, a region with high degree is connected to many
regions and a region with low degree is connected to a small number
of regions. Membership diversity indexes a different aspect of network
structure. For instance, a region with a high membership value for one
community (it participates highly in that community) and low mem-
bership values elsewhere would have lowmembership diversity because
it participates mostly within a single community; in contrast, a region
with intermediate membership values across multiple communities
would have high membership diversity because it participates in
multiple communities. Thus, degree helps measure the extent to
which a region is a “hub” (Guimera and Amaral 2005, Guimera and
Nunes Amaral, 2005; see Section 4.2.4 for further discussion), and
membership diversity indicates the extent to which a region is a cross-
community “bridge” (Nepusz et al., 2008; Yu et al., 2007). Combining
these two measures leads to four general classes of regions:

• Locally connected regions (low degree/low diversity) are not
highly connected and communicate primarily within a single
community;

• Local hubs (high degree/low diversity) are highly connected regions
that communicate primarily within a community;

• Bottleneck bridges (low degree/high diversity) are regions with few
connections that span multiple communities;

• Hub bridges (high degree/high diversity) are highly connected regions
with connections that span multiple communities.

We were particularly interested in investigating the distribution of
the last two types of node above for both rest and task datasets. For vi-
sualization,we sorted the regions based on their bridgeness score in each
condition (Figs. 14 and 15; Materials and methods). Notably, several
properties observed at rest were altered during task execution. See
Discussion for further elaboration and Supplementary Material
Section S.2.2 for additional analyses.

3.6. Reliability of results

The above results were based on the median of the membership
values across bootstrapping iterations. The bootstrapping results give



Fig. 13. Modularity scores of overlapping communities for rest and both tasks. The
histograms depict the whole-brain modularity scores across 5000 iterations (each
modularity score was obtained by summing modularity scores across communities).

Fig. 15. Hub bridges. Bridgeness scores for each region and condition (top: resting state,
middle: working memory, bottom: emotion). Colors indicate the percentile of the ROI's
median score across 5000 iterations (for example: regions colored red had bridgeness
scores around the 90th percentile or above). Black contours indicate regions discussed
in the text.
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us the ability to define confidence intervals on these estimates. For
example, for Figs. 6, 11 and 12, the frequency histograms were
generated by considering all 5000 iterations. Each bin shows the
median frequency across iterations and an interval around the
median. Note that only ROIs with membership values consistently
greater than zero were considered in the generation of the
histograms.

In addition, for every ROI with nonzero membership value, and
across all three conditions, we determined confidence intervals (see
Figures S5–S7). For instance, consider community OC1 during rest in
which approximately 250 ROIs exhibited membership values consis-
tently greater than zero. Figure S5 shows the membership values as a
function of ROI (reordered in ascending fashion for clarity) and the
95-percentile confidence interval around the median. This figure, as
well as the ones for other communities and conditions, shows that al-
though therewas variability from sample to sample around themedian,
the estimates reported are reliable.
Fig. 14. Bottleneck bridges. Bridgeness scores for each region and condition (top: resting
state, middle: working memory, bottom: emotion). Colors indicate the percentile of the
ROI's median score across 5000 iterations (for example: regions colored red had
bridgeness scores around the 90th percentile or above). Black contours indicate regions
discussed in the text. Bottom row: horizontal slices at illustrating strong bridges in the
anterior insula.
3.7. Does overlapping community structure at the group level reflect that at
the participant level?

The results described thus farwere based on a resulting group corre-
lation matrix. It is possible, however, that the results were distorted by
the implicit averaging associatedwith our approach. In the extreme, it is
possible that each participant had disjoint community structure that
differed spatially to some extent, so that the regionswith highmember-
ship diversity at the group level were artifacts induced by averaging
spatially variable subjects. This possibility is increased given recent
studies illustrating individual variability in large-scale networks
(Mueller et al., 2013; Gordon et al., 2015). To address this possibility,
we performed a series of control analyses (the full analyses are
described in the Supplementary Material Section S.2.5). We ran the
mixed-membership algorithm on resting-state data for each of the 94
participants individually. For each participant, we employed data
corresponding to two runs, which provided a sizeable amount of data
(unlike the task data which in the Human Connectome Project is rather
minimal).

The extracted communities of a few sample participants are shown
in Fig. 16 (for additional results, see Supplementary Material
Section S.2.5). Informal visual comparison with the group results in
Fig. 4 shows very good agreement between the two. More quantitative-
ly, the histograms of the estimated communities at the subject level
confirmed the overlapping structure of the communities (Fig. 17).
Fig. 16.Overlapping community organization during rest at the individual level for sample
participants. Each rowdepicts the six overlapping communities extractedwith themixed-
membership model per subject (sOC). Membership values are thresholded at 0.1 for
illustration.



Fig. 17. Frequency histograms of membership values for overlapping communities
estimated at the individual level during rest. Bins show median values across 94
subjects (error bars show the of 25th–75th percentile range). Brain insets show median
membership values across subjects (thresholded at 0.1 for illustration). The colors of the
bars correspond to the range of membership values shown in the brain insets.
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Comparison with the group results (Fig. 6) also illustrates very good
agreement in the shape of the distributions.

Taken together, for resting-state data, analyses at the participant
level demonstrated that dense overlapping community structure is
present at the level of individual participants, and that the group results
did not unduly distort patterns observed at the individual level. In addi-
tion, we also observed individual variability in membership diversity
values which will be important to consider in future studies (see
Supplementary Material). Finally, although the present results are
encouraging, the same approach needs to be employed for task data
once longer time series are available.

4. Discussion

We employed a mixed-membership approach to unravel the
structure of overlapping large-scale brain networks. Our aims were as
follows: 1) compare the community structure of disjoint and overlapping
networks; 2) determine the relationship between functional diversity
and membership diversity; 3) characterize the overlapping community
structure during rest and task states; and 4) study the distribution of
“bridges” in the brain, including bottleneck and hub bridges, during
both rest and tasks. Below, we discuss the implications of our main
findings.

4.1. General issues

Yeo et al. (2014, p. 225) investigated overlapping brain networks
during rest and suggested the following: “Our results suggest that
segregation and interdigitation of networks in association cortex may
be a true feature of cortical organization and not an artifact of the
methods used to estimate their topography”. Our results corroborate
their conclusions in that they revealed dense network overlap at both
rest and task conditions. Thus, fully considering network overlap is
important for unraveling the organization of brain networks.

Based on studies of perception, cognition, emotion, and motivation,
we have proposed that brain networks are highly interdigitated
(Pessoa, 2013; Pessoa, 2014). Conceptually, this view of brain networks
stems from the argument that themapping from structure to function is
not one-to-one. Instead, the mapping is many-to-many, such that a
brain region participates in many functions and similar functions are
carried out by many regions.

Consider, briefly, the case of the amygdala. Even a simplified view of
its anatomical connectivity shows that, minimally, it belongs to three
networks. The first is a “visual network”, as the amygdala receives fibers
from anterior parts of temporal cortex, and influences visual processing
via a set of projections that reach most of ventral occipito-temporal
cortex. The second is the well-known “autonomic network”, and via
connections with the hypothalamus and periaqueductal gray (among
many others), the amygdala participates in the coordination of many
complex autonomic mechanisms. The third is a “value network”, as
evidenced by its connectivity with orbitofrontal cortex and medial
prefrontal cortex. Thus, the amygdala affiliates with different sets of
regions (“communities”) in a highly flexible and context-dependent
manner.

These ideas are related to the “flexible hub theory” by Cole et al.
(2013). One component of this framework predicts that “some brain re-
gions flexibly shift their functional connectivity patterns with multiple
brain networks across a wide variety of tasks” (Cole et al., 2013;
p. 1348). Cole and colleagues suggest that fronto-parietal regions are
particularly important “flexible hubs”. They described a pattern of func-
tional connectivity thatwas “representational”, where brain-wide func-
tional connectivity patterns across a fronto-parietal community across
64 task states reflected the similarity relationships between tasks, and
could be used to identify task states. Our findings are in agreement
with their framework, but suggest a dense overlap organization that
extends beyond fronto-parietal regions.

Given the discussion in the previous paragraphs, it is instructive to
discuss the concept of modularity per se. Modularity is a term with
multiple connotations in cognitive, brain, and network sciences (for
example, see Shallice, 1988; Shallice and Cooper, 2011). Although we
cannot provide a fuller account of the issues here (but see, Pessoa,
2013, Chapter 8; Pessoa, 2014), we briefly comment on the relationship
between the presence of overlapping communities and modular struc-
ture. In particular, the presence of some overlapping organization in it-
self does not necessarily imply strong non-modular structure. For
instance, as discussed, some nodesmay be re-used across communities,
particularly brain regions that act as bridges. More generally, systems
(neural or otherwise) admit to different degrees of modularity insofar
as their components admit to different degrees of isolability (Bechtel
and Richardson, 1993). But we suggest that the distribution of network
membership values revealed by our analysis, with the associated dense
community overlap, reveals a substantial amount of non-modularity in
large-scale brain networks at rest and task states.

Finally, we note that some techniques used to study functional con-
nectivity, including ICA (e.g., Smith et al., 2012) and variants of Principal
Component Analysis, generate overlapping activation maps. To decom-
pose the adjacency matrix, a frequent assumption is that the communi-
ties are orthogonal. While there are methods which relax this
orthogonality constraint, they all make assumptions about the nature
of the underlying sources: for example, temporal ICA assumes that
each component will be temporally independent; factor rotations
make assumptions regarding “sparsity”, and so on. Methods based on
ICA have made important contributions to the understanding of
large-scale brain networks (Calhoun et al., 2001; Smith et al., 2009).
Nevertheless, their assumptions are not without controversy
(e.g., Friston, 1998). In particular, application of temporal ICA is chal-
lenging in the context of functional MRI data because it requires a
large number of samples to function well, and those are typically not
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available with standard “slow” sampling rates (~2 s; though faster
sampling with newer pulse sequences reduces this problem).
4.1.1. Membership diversity and participation coefficient
The participation coefficient is a graph-theoretical measure that

captures the distribution of edges of a node across all of the communi-
ties in a network, and has been used to characterize the type and distri-
bution of hubs in networks (Guimera and Amaral, 2005, Guimera and
Nunes Amaral, 2005; Power et al., 2013). It thus expresses a similar
property as the membership diversity investigated here. At one level,
the distinction between the two can be viewed as fairly subtle. Note,
however, that in the case of the participation coefficient, the communi-
ties are typically conceptualized as disjoint, and have more or less
clearly defined boundaries. The mixed-membership framework offers
the possibility to view communities as intrinsically interwoven, such
that there is no need to actually define boundaries. This approach may
be particularly interesting in situations where dense overlap is present,
and a more graded version of community organization is conceptually
advantageous.
4.2. Specific issues

4.2.1. Community structure at rest
Extracting mixed memberships revealed network structure that

matched many of the general features of disjoint networks. This was
particularly the case for four of the communities (OC1–OC4) that exhib-
ited strong matches (cosine similarity greater than 0.85) with specific
disjoint communities (DC1–DC4, respectively). Networks OC5 and
OC6 showed somewhatweakermatches to a single disjoint community.
In addition to the strongest matching community, several of the mixed
communities correlated non-trivially with other disjoint communities;
for instance, OC2 and DC5 (0.19), OC3 and DC6 (0.16), and so on. This
suggests that mixed communities are not fully captured by a single
disjoint community, and that they contain information that is not well
described by disjoint communities.

We gained a richer characterization of the networks by considering
the distributions ofmembership values (Fig. 6; note that the histograms
already eliminated ROIs with membership values that were not reliably
greater than 0). Data that would be well characterized by a single com-
munity would exhibit a membership distribution concentrated mostly
with values close to 1. All mixed communities had non-trivial member-
ship values contributions far from the peak of 1. Inspection of the distri-
butions suggests that all mixed communities would not be well
described by a single community. Even for OC3, most of the probability
mass (N60%) was observed in the non-maximal bins. Thus, whereas the
mixed-membership approach reproduced many of the general features
of the disjoint communities, mixed communities contain information
that is not captured by disjoint communities.
4.2.2. Functional diversity
Several groups have suggested that brain regions can be conceptual-

ized via their functional repertoire which is inherentlymultidimension-
al (see Anderson et al., 2013; Bzdok et al., 2013; Lancaster et al., 2012;
Passingham et al., 2002; Poldrack, 2006; Poldrack et al., 2009).
Accordingly, brain regions vary considerably in their functional
diversity. In particular, regions such as the anterior insula, as well as
parts of lateral and medial frontal cortex, are highly diverse. We
conjectured that functional diversity would be linkedwithmembership
diversity observed at rest. In other words, regions with high functional
diversity should participate in several networks, insofar as they may
be engagedwith a broad range of regions in the process of participating
in diverse functions. Here, we found a positive association between
functional and membership diversity, suggesting that the two proper-
ties are linked.
4.2.3. How do tasks alter the functional connectivity landscape?
Buckner et al. (2013) asked the following question: Do networks

studied during the resting state capture fundamental units of organiza-
tion or should “rest” be considered just another arbitrary task state?
Both sides of this debate are represented in the literature (for discussion
and references, see Cole et al., 2014). To investigate this question, we
compared mixed networks observed during rest, as well as working
memory and emotion tasks.

Although similarities were apparent between rest and task commu-
nities, important changeswere observed. For example during thework-
ing memory task, only two communities that were associated with
sensory and sensorimotor aspects (WM1 and WM2) were fairly well
represented by a single community observed at rest (OC1 and OC2, re-
spectively; this was particularly the case forWM2/OC2). The remaining
communities correlated nontriviallywith two ormore communities ob-
served at rest. Likewise, during the emotion task, several communities
overlapped with multiple communities observed at rest. Our findings
support the idea that considerable reorganization is observed during
specific tasks, and that it may be prudent to consider “rest” as a partic-
ular task state.

The relationship between networks observed during the resting
state and task states was also investigated by determining themodular-
ity structure of the communities. Quantifying modularity provides a
measure of the extent to which signals potentially can flow between
communities. We can thus consider the inverse of modularity as an
index of communicability. Communicability was lowest during resting
state and increased for both tasks. Importantly, increases in communi-
cability were observed across multiple communities, and were not
limited to specific cases, such as decrease only in visual or sensorimotor
communities. It thus appears that, during the two tasks studied here,
coordinated activity between regions that is important for task
execution shapes the observed networks by increasing inter-region
integration — hence, decreasing modularity.

4.2.4. Characterizing different types of bridges
The framework of overlapping communities offers a natural way to

discover nodes that participate across multiple communities — “brid-
ges”. Here, we combined node membership diversity (which captures
the extent to which a node participates in multiple communities) with
node degree to investigate two types of bridges: bottleneck bridges,
which are regions with relatively few connections that span multiple
communities; and hub bridges, which are regions with relatively many
connections that span multiple communities. Our approach was to
determine bridgeness scores for all ROIs and not adopt an arbitrary
threshold, so that the spatial distribution of bridgeness could be better
appreciated.

At rest, severalbottleneck bridgeswere found in theprefrontal cortex.
These included regions in dorsolateral andmore inferior prefrontal cor-
tex. At rest, hub bridges were not prominently found in the prefrontal
cortex. Notable changes were observed during task execution, some of
which we comment on here. During the working memory task, several
regions in occipital cortex showed high hub bridge scores. Whereas the
same regions were also well connected at rest (they behaved as local
hubs, which are highly connected regions that communicate primarily
within a community), they diversified their participation across com-
munities during the working memory task (and to some extent during
the emotion task), thus increasing bridgeness. This is interesting in
light of the fact that the task required participants to hold inmind infor-
mation about multiple types of visual stimuli (places, tools, faces, and
body parts), and suggests that workingmemory performance is charac-
terized by the participation of visual cortex in multiple large-scale
networks (see Sreenivasan et al., 2014). This is also evidenced by the
stronger hub bridges observed in ventral temporal cortex (which were
not prominent during rest).

During the emotion task, hub bridges in parietal cortexwere stronger
more inferiorly in the vicinity of the angular gyrus, whereas they were
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stronger more medially/superiorly during rest in the superior parietal
lobule and the vicinity of the intraparietal sulcus. Furthermore, strong
bottleneck bridges were not prominent in dorsal prefrontal regions,
and were found instead more inferiorly (especially on the right hemi-
sphere). These findings resonatewith the roles attributed to the angular
gyrus (Seghier, 2013) and inferior frontal regions. Interestingly, sites in
the inferior frontal gyrus have been consistently reported inmany emo-
tion tasks and implicated in “emotional salience”, and a recent meta-
analysis has identified the inferior frontal gyrus (on the right hemi-
sphere) as a “hub” for emotional processing (Kirby and Robinson,
2015). Ourfindings suggest that this regionmay function as a bottleneck
bridge, that is, a region that is not necessarily highly connected but one
that participates across several communities. In addition, the anterior
insula behaved as a strong bottleneck bridge, a role that was also ob-
served at rest (but not during working memory).

Our analysis revealed that multiple subcortical areas play notable
roles as bridges (but see next section for study limitations). Notably,
the amygdala, caudate, putamen, thalamus, and hippocampus were
found to be strong bottleneck bridges at rest. The cerebellum behaved
as a strong hub bridge at rest (especially on the left), showing that it
not only had highmembership diversity but also high connectivity (de-
gree) overall. During the emotion task, all subcortical regions behaved
as strong bottleneck bridges. During the working memory task, the
brainstem and the cerebellum, as well as the right caudate and right
thalamus, behaved as strong hub bridges, while the putamen and hippo-
campus behaved as strong bottleneck bridges. Combined, these findings
suggest that subcortical regions play important roles in the flow of in-
formation at both rest and during specific tasks (but see next section).
Several previous studies of large-scale functional networks did not
account for potential contributions of subcortical areas, an omission
that has contributed to a cortico-centric view of networks. But it is
well documented in the literature that many subcortical areas have
massive connectivity with cortex and play part in important cortico-
subcortical circuits, including areas such as the striatum, thalamus,
amygdala, and cerebellum (Alexander et al., 1986; Amaral et al., 1992;
Jones, 2006; Middleton and Strick, 2000; Sherman and Guillery, 2013).

Finally, we note that nodes typically associated with the task-
negative network did not have high hub bridgeness scores. This is in
contrast to reports based on degree that suggest that they are “globally”
connected regions (for example, Cole et al., 2010; Tomasi and Volkow,
2011). Here, degree played a role in the labeling of bridges as “hub
bridges” or “bottleneck bridges”, which only indicates if a bridge be-
tween communities is linked to multiple or a few other regions,
respectively.

4.2.5. Study limitations
In this section, we discuss some of the limitations of our study. For

one, the choice of number of ROIswas somewhat arbitrary. For instance,
Hagmann et al. (2008) employed 998 cortical regions, Power et al.
(2012) used 264 cortical ROIs, and Yeo et al. (2011) used 1175 uniform-
ly spaced vertices. In the present study (960 cortical and subcortical
ROIs), we chose a relatively large number of regions (and consequently
small in size in cortex) because our goal was to investigate overlapping
communities; we thus did notwant to favor the possibility of overlap by
having regions that were large and potentially more functionally het-
erogeneous.We also note that the cortical ROIs defined herewere solely
based on the spatial coordinates of the respective surface vertices.
Therefore, futurework not only should investigate the role of ROI “gran-
ularity” (that is, size/number), but also the effect of functional homoge-
neity in the definition of ROIs. In addition, we did not subdivide
subcortical regions into small parcels, which is suboptimal because sub-
cortical regions are heterogeneous and contain subnuclei. Accordingly,
future studies will need to re-investigate the overlapping community
structure of subcortical regions at finer levels of parcellation.

Another limitation of the paper is that it investigated a single over-
lapping community algorithm. Research on this class of algorithms
(Xie, 2013) has grown considerably since at least the impactful publica-
tion by Palla et al. (2005; over 3000 citations in Google Scholar). There-
fore, it will be important to investigate overlapping community
structure across a broader range of algorithms; for a different approach
than the one adopted here, see Yeo et al. (2014). Someof the advantages
of the method employed here include its scalability to massive net-
works given the new methods used for stochastic variational inference
(these scale only linearly on the variables of interest, such as the num-
ber of node pairs and the number of communities). An important fea-
ture of the method is the ability to provide continuous membership
values (from 0 to 1) that indicate the extent to which a node belongs
to each community, which is in contrast to other methods that treat
overlap as binary (present/absent). An important limitation of the pres-
ent method is that the results depend on the parameter K, the number
of communities. However, the probabilistic nature of the method en-
ables the use of predictive methods to find the best model fit given
the data, thereby assuaging this problem somewhat. Nevertheless, a
more complete investigation of the overlapping community structure
as a function of the number of communities is warranted. Another lim-
itation of themethod is that it does not accept weighted edges, thus re-
quiring a binarization step. Here, we binarized the data with a
thresholding method that identifies edges that are consistently among
the strongest links for each participant. Nevertheless, in general,
methods that avoid binarization may uncover important information
in networks (Goulas et al., 2014), and the study of overlapping commu-
nity structure with weighted networks should be pursued in future
studies.

Finally, we note the large difference in the amount of data available
for resting-state and task data. Because we used Human Connectome
Project data, task data were limited to relatively short scans with less
than 200 volumes. Therefore, the estimates for overlapping community
structure are considerably more robust for the rest data, and additional
evaluation of task data is required.
5. Conclusions

Our investigation was driven by the idea that large-scale brain net-
workswill benefit from amixed-membership or overlapping character-
ization. While much work has described the brain in terms of disjoint
clusters, this type of characterization does not capture the flexible and
task dependent mapping between brain regions and their functions.
Work that emphasizes the important role of hubs that simultaneously
participate in multiple networks is an important step in the direction
of a richer description of brain networks. However, the present work
suggests that an even more interwoven community organization may
exist. Among others, our analysis of rest and task data revealed several
properties of overlapping brain networks. 1) Overlapping brain net-
works exhibited general features that resemble those of standard dis-
joint clustering; however, community membership values spanned
the whole range, from weak (closer to 0) to strong (closer to 1), show-
ing that disjoint clustering discretizes important information regarding
the association of brain regions to multiple networks — thus, disjoint
communities do not capture the information that is present in mixed
communities. 2) Functional diversity of brain regions (that is, the
range of functions they participate in) was linearly associated with
membership diversity (that is, the extent towhich a brain region partic-
ipates across multiple networks). 3) Task performance substantially al-
tered the structure of functional connectivity across brain regions, and
4) enhanced communicability across the brain (that is, modularity de-
creased during tasks relative to rest). 5) We were also able to study
thedistribution of “bridge”nodes, includingbottleneck and hub bridges.
Task performance altered the role of regions in important ways. We
conclude that overlapping network methods provide a promising
framework to investigate the structure of large-scale brain networks
during both rest and tasks states.
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