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Abstract—In the last few years, a large number of experi-
ments have been focused on exploring the possibility of using
non-invasive techniques, such as electroencephalography (EEG)
and magnetoencephalography (MEG), to identify auditory-
related neuromarkers which are modulated by attention. Re-
sults from several studies where participants listen to a story
narrated by one speaker, while trying to ignore a different
story narrated by a competing speaker, suggest the feasibility
of extracting neuromarkers that demonstrate enhanced phase
locking to the attended speech stream. These promising findings
have the potential to be used in clinical applications, such as
EEG-driven hearing aids. One major challenge in achieving
this goal is the need to devise an algorithm capable of tracking
these neuromarkers in real-time when individuals are given
the freedom to repeatedly switch attention among speakers at
will. Here we present an algorithm pipeline that is designed to
efficiently recognize changes of neural speech tracking during
a dynamic-attention switching task and to use them as an input
for a near real-time state-space model that translates these
neuromarkers into attentional state estimates with a minimal
delay. This algorithm pipeline was tested with MEG data
collected from participants who had the freedom to change the
focus of their attention between two speakers at will. Results
suggest the feasibility of using our algorithm pipeline to track
changes of attention in near-real time in a dynamic auditory
scene.

I. INTRODUCTION

One of the most remarkable features of the brain is
its ability to use attention to select a speaker in a cocktail
party scenario, that is in a multi-speaker environment. Great
effort has been spent in the past decade to understand the
mechanisms underlying the ability of the brain to segregate
multiple sound sources and to direct its attention to the
intended speaker. Several studies where participants were
asked to attend to one, while trying to ignore a competing
speaker, have suggested that low-frequency oscillations of the
brain are more phase-locked to the speech envelope of the
attended stimulus [1]-[3]. A number of studies using non-
invasive electrophysiological measurements (EEG and MEG)
have attempted to devise “attentional decoders”, whose goal
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is to decode the focus of attention when more than one
speaker is present in the mix [4]-[7].

A major challenge in using M/EEG neuromarkers to
identify the listener’s attentional focus is the poor accuracy
of attention decoding algorithms in near real-time settings.
Current and past attempts to use M/EEG neuromarkers to
determine a listener’s attentional focus often use tens of
seconds before making decisions. This long delay prevents
the rapid decisions required in realistic auditory scenes where
switching from one auditory source to another is common-
place, or where the audio signal might even be altered in re-
sponse to changes in the neuromarkers themselves to increase
signal saliency and clarity. Overcoming this limitation would
be critical in order to adopt these algorithms for clinical
applications. Recent efforts have focused on the feasibility of
using neuromarkers extracted from EEG signals as feedback
to optimize hearing-aid parameters [8], [9].

A state-space model based on Bayesian filtering has been
recently proposed by our group as a solution to the near
real-time estimation of attentional state [10], [11]. Notably,
this model has an aggregate decision delay of only a few
seconds, making it a potential candidate to be embedded
in future generation hearing-aids processors. Even though
results were promising, subjects were not tested in the case of
a dynamic task where they were allowed to switch attention
on their own volition, which mimics the more realistic
auditory user experience. Here we present an experiment
where participants had the freedom to switch attention at
will. To the best of our knowledge, this is the first attempt
to apply attention decoding algorithms to a setting similar to
this real-life usage. We also propose the addition of a three
state Hidden Markov Model (HMM) in an attempt to better
track attentional-related changes in neuromarkers.

Results from this study show the feasibility of our al-
gorithm pipeline to track changes in auditory attention in
near real-time. Additionally, the new HMM component en-
hanced our ability to track attentional-related changes in
neuromarkers, thus improving the decision making accuracy
of our algorithm.

II. METHODS

The experimental protocol and all procedures were re-
viewed and approved by the Institutional Review Board
of the University of Maryland. Participants gave written,
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informed consent, according to principles set forth by the
University of Maryland’s Institutional Review Board.

Participants. Participants comprised 5 younger adults
(22-33 yr) recruited from the University of Maryland. All
participants were native English speakers, had no history of
neurological disorders and had clinically normal hearing.

Stimuli and Recording. Participants were asked to attend
to one of two stories presented diotically while ignoring the
other one. The stimuli consisted of two segments from the
book, The Legend of Sleepy Hollow by Washington Irving.
One of the segments was narrated by a male speaker, while
the other one by a female speaker. The speech mixture
was presented at ~70 dB sound pressure level and was
constructed by digitally mixing two speech segments into a
single channel, with a duration of 90 seconds and at a signal-
to-noise ratio of 0 dB, as defined by calculating the logarithm
of the root-mean-square value. Participants listened to 3 trials
of the same speech mixture and were instructed to start
attending to the male speaker first and then to switch the
focus of their attention at their own will for a minimum of 1
time and a maximum of 3 times. Participants were also given
a switching button that they were instructed to press every
time they decided to switch attention. Neuromagnetic signals
were recorded at a sampling frequency of 2000 Hz using
a 157-sensor whole-head MEG system (Kanazawa Institute
of Technology, Nonoichi Ishikawa, Japan) in a magnetically
shielded room.

Data Analysis. MEG data were analyzed offline using
MATLAB. Three reference channels were used to measure
and cancel the environmental magnetic field by using time
shift-principal component analysis [12]. The 157 raw MEG
data channel responses were first filtered between 2 and 8
Hz, then decomposed using n spatial filters into n signal
components (where n < 157) using the denoising source sep-
aration (DSS) algorithm [13], [14]. The first DSS component
filter was then used for the analysis. The signal components
used for analysis were then re-extracted from the raw data
for each trial, spatially filtered using the first DSS filter just
constructed and then band-pass filtered between 1 and 8 Hz.
A total of 3 time series, one per trial, were obtained and
used for the final analysis. The reconstructed envelope was
obtained from the unmixed speech of the single speakers
used for the task, not from the acoustic stimulus mixture. The
envelope was computed as the 1- to 8-Hz band pass-filtered
magnitude of the analytic signal. Both speech envelope and
neural data were then downsampled to 200 Hz.

Estimation of the Temporal Response Function (TRF).
Neuromarkers were extracted from the attention-modulated
coefficients of the encoder estimated for the envelope of each
speaker. In the context of the encoding model, these coef-
ficients are referred to as the Temporal Response Function
(TRF) [1]. The TRF carries two important characteristics:
it has a high degree of sparsity and is modulated by atten-
tion. TRFs were estimated by using the FASTA software
package [15] available online at [16], which allowed us to
calculate the coefficients in consecutive non-overlapping 500
ms windows. For more details on the TRF estimation details

please refer to [10]. At each time window, the absolute value
of the peaks between 75 and 250 ms was extracted, then
smoothed using a Savitzky-Golay FIR smoothing filter and
the maximum value was denoted as the magnitude of the
M100 peak. The M100 peak in TRF has been extensively
studied as an attention-modulated neuromarker [1], [5].
Hidden Markov Model (HMM). An HMM was used to
estimate the internal state of the dynamics of the M100 peak
based on its first derivative. Let A(t) denote the amplitude
of the M100 peak at time ¢. The HMM consisted of the
following three states: State 1 indicated no significant chan%e
in d‘iit), State 2 indicated a significant increase in d’zgt s
while State 3 indicated a significant decrease in d’;‘lgt). The
Viterbi algorithm was used to estimate the most likely path of

the hidden states. A threshold of Th = 3 x 10~ was used to

classify the derivative in stable (S) —Th < d‘zit) < Th, pos-
itive (P) d‘zit) > Th and negative (N) dgit) < —Th states.

The M100 peak time-series was smoothed using weighted
linear least squares in order to facilitate the estimation of

d’zgt). The HMM transition probabilities were chosen as:
0.8 01 0.1
P;; =015 08 0.05],

0.15 0.05 0.8
and the following observation likelihoods were used:
P(S]1)=0.7,P(S|2)=0.15,P(S | 3)=0.15
P(P|1)=0.25P(P|2)=0.7,P(P|3)=0.05
P(N|1)=0.25,P(N|2)=0.05P(N|3)=0.7

The initial probabilities were the following: II; = 0.6, IIr =
0.2, 113 =0.2.

An adjustment variable adj was initialized to O and
updated each time the state of the peak was determined.
Specifically, for state 1 no changes were made to adj, for
state 2 the variable was incremented by 1.3% of the peak
amplitude, while for state 3 the variable was decremented by
1.3% of the peak amplitude. The variable was then added to
the original value of the maximum peak to create the final
neuromarker. By doing so, we “boosted” the peak when in
state 2 and “penalized” it when in state 3. The specific value
of the percentage increase/decrease of the peak was critical
to allow smooth changes in the neuromarker. This procedure
was adopted to incorporate the presence of a significant rise
or fall in magnitude of the M100 peak, indicating a likely
switch of attention.

Bayesian Filtering. The neuromarkers extracted were then
fed into a near real-time state-space estimator that translated
them to robust and statistically interpretable estimates of the
attentional state with a minimal delay [10], [11]. The forward
lag was set at ~1.5 seconds, with the backward lag at ~13.5
seconds. The forgetting factor was set at 0.95, while the
regularization parameter was set at 0.001. More details of
this algorithm can be found in [10], [11].

III. RESULTS

Representative subject: Here we report the results from
representative subject R2082. Figure 1 shows the results
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of the TRF estimate (Panel A) and the real-time state-
space estimates of the attentional state (Panel B) during the
second trial. Vertical lines in panel B represent the time
when the subject pressed the switching button to signal
her attentional switch. As expected, the TRF of both male
(top) and female (bottom) speakers exhibit some degree of
sparsity, as shown by two major peaks appearing at ~50 ms
and ~100 ms throughout the duration of the task, consistent
with [1]. M100 magnitude displayed in Panel B (top) show
a strong modulation consistent with the switch of attention
of the participant. Specifically, during the first ~18 seconds
the M100 peak corresponding to the male speaker (black
waveform) is larger than the one corresponding to the female
speaker (red waveform). Then as the subject starts switching
her attention towards the female speaker, as indicated by
the vertical line at ~22 seconds, the trend is reversed and the
attend-female neuromarker becomes stronger than the attend-
male one. The subject then switches attention two more times
(~47 and ~66 seconds) during the task and in both cases
a change in the strength of the neuromarkers is observed.
Attentional state is correctly recognized by the state-space
model, that shows a change in probability following the trend
of the attend-male and attend-female neuromarkers.

0.005

Biomarker (A.U.)

0
Reported
At Speaker

20 10 60 80

Time (s)

Fig. 1. Panel A: TRF estimated with FASTA of the male (top) and of
the female (bottom) speakers.The black rectangular boxes show the time
window (75 to 250 ms) used to estimate the M100 peak at each point in
time. The narrow black and red line are used to track the peak position used
for the analysis for male and female TREF, respectively. The scale of the color
bar has been adjusted to better visualize the peaks. Panel B: M100 peak
magnitudes (i.e. neuromarkers) (top) extracted at each point in time for male
(black) and female (red) speakers and near real-time state-space estimates
of the attentional state (bottom). The state-space model output displays the
estimated probability of attending to the male speaker. The blacked dashed
line indicates the threshold for attentional switch (> 0.5 attending male),
while the black vertical lines show the time when the subject pressed the
switching button to indicate change of attention. Colored hulls indicate 90%
confidence intervals of the state-space estimates. The black and red letters
M and F indicate the speaker that the subject reported attending to.

Results from all the 3 trials for subject R2082 are shown in
Figure 2. Overall, the neuromarkers reliably follow attention
switch of the subject in all the 3 trials. The real-time state-
space algorithm also transforms the extracted neuromarkers
into a robust and interpretable measure of the attentional state
for all the 3 trials.

The HMM performance: Figure 3 shows the results
of the estimates of attentional state without (middle row)
and with (bottom row) the inclusion of the HMM in our
algorithm pipeline. Boosting or penalizing the peaks of the

Trial 1 Trial 2 Trial 3
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Fig. 2. Results from the 3 trials recorded from subject R2082. The top
row shows the M100 peak magnitudes (i.e. neuromarkers) extracted at each
point in time for male (black) and female (red) speakers and near real-time
state-space estimates of the attentional state (bottom). The blacked dashed
line indicates the threshold for attentional switch (> 0.5 attending male),
while the black vertical lines show the time when the subject pressed the
switching button to indicate change of attention. Colored hulls indicate 90%
confidence intervals of the state-space estimates. The black and red letters
M and F indicate the speaker that the subject reported attending to. Overall,
neuromarkers reliably follow the speaker the participant is trying to focus
on.

TRF, depending on their predicted state, resulted in a more
reliable estimation of the neuromarkers, as it is particularly
evident in the last ~23 seconds of trial 2. At ~67 seconds the
subject indicated the intention to switch attention, which is
corroborated by a steep decline in the strength of the male
neuromarker, as shown in the top panel. However, without
penalizing the male neuromarker for this steep decline, the
change in attentional state is not detected until ~84 seconds,
because of the failure of the female neuromarker to rapidly
increase above the level of the male neuromarker.
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Fig. 3. Results of the real-time state-space estimates of the attentional state
with and without HMM. The top row shows the neuromarkers without (left
panel) and with (right panel) HMM. The middle and bottom row shows
the real-time estimates of the attentional state without (middle row) and
with (bottom row) the addition of the HMM to the algorithm pipeline.
The blacked dashed line indicates the threshold for attentional switch (>
0.5 attending male), while the black vertical lines show the time when the
subject pressed the switching button to indicate attention switch. Colored
hulls indicate 90% confidence intervals of the state-space estimates. The
black and red letters M and F indicate the speaker that the subject reported
attending to. Boosting and penalizing the neuromarkers based on the current
state of their slope results in a more reliable estimate of the attentional state.

The penalization of the attend-male neuromarker allows
the attend-female neuromarker to raise above the attend-male
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neuromarker, resulting in the correct detection of attention
switch. The penalization and boosting of the peaks is small
enough to preserve the smoothness of the neuromarkers, thus
maintaining the general trend of the dynamics.

IV. DISCUSSION

In this paper, we have shown the feasibility of using a near
real-time algorithm pipeline to track the attention state in
a dual-speaker setting during a dynamic-attention switching
task, thus taking an additional and important step towards
the possibility of embedding attention decoding algorithms
in future generation of hearing-aids processors. Importantly,
the task devised for this experiment reproduced very closely
a real-life scenario, where individuals switch their attention
frequently at their own will. Previous experiments have
constrained the subjects to either focus their attention to the
same speaker for the whole duration of the task [1], [2] or to
switch their attention half way through the task only once [5],
[10]. Multiple and free attention switches will also give us the
opportunity to investigate the dynamics of the relevant neural
processes at the critical moment when individuals willingly
shift the focus of their attention.

The addition of a derivative-based three state HMM to our
algorithm pipeline also proved to be beneficial in tracking
the oscillatory patterns of the neuromarkers. Boosting or
penalizing the amplitude of the peaks of the TRF based on
their trend could be critical to facilitate detection of attention
switches in situations where intrinsic characteristics of the
speech envelope (e.g. pitch) may be responsible for weaker or
stronger representation of the TRF peaks. This scenario was
particularly relevant in the last ~23 seconds of trial 2 (Fig.
2), where our participant indicated her intention to switch
attention from the male to the female speaker. The male
neuromarker exhibited a steep decrease in amplitude, which
was not paired by a rapid and sufficient increase in amplitude
of the female neuromarker, resulting in failure to correctly
detect a switch of attention. The addition of the HMM model
allowed us to capture such oscillatory trends in the male and
female neuromarkers. This boosting/penalization approach
could be beneficial in real-time applications, as it would
allow the algorithm to “speed up” the recognition of changes
in the oscillatory patterns initiated by switching of attention.

Two interesting observations can be extrapolated from our
results. The first one is the delay between the time that the
attentional neuromarkers started changing their pattern and
the time that the participant pressed the switching button.
We speculate that this trend could be simply explained by
a transition time necessary for the subject to switch her
attention. It is possible that the focus of her attention started
to naturally and gradually shift towards the competing talker,
seconds before she decided to press the switching button.
Therefore, pressing the switching button may have signaled
the exact time where the subject was able to phase-lock to
the other speaker rather than the initial stage of her attempt
at switching attention. The second observation is related to
situations where attention may be equally split or switch back
and forth rapidly between the two speakers. This situation

is particularly evident in the third trial Fig. 2, in the ~38
seconds to ~45 seconds interval, where the output of the
state-space estimator fluctuated around 0.5. Interestingly, this
fluctuation precedes the pressing of the switching button,
thus suggesting that the subject may have found herself in a
situation where her attention was splitting or switching back
and forth rapidly between the two speakers. This is indeed
a very familiar scenario that we face every day and that will
need to be addressed in our future studies.

In conclusion, this paper reports preliminary results sug-
gesting the feasibility of tracking attention in a scenario that
closely represents our daily listening experience, thus taking
an additional and important step towards the feasibility of us-
ing attention decoding algorithms for practical applications.
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