Introduction

- Neural processing of speech involves time-locked neural mechanisms that can be detected using MEG or EEG neuroimaging.
- Linear models called Temporal Response Functions (TRFs) are widely used to study the impulse response of this neural system.
- Accurate estimation of TRF components is essential for subject-specific investigations into speech processing.

We compare two common methods, ridge regression and boosting, in terms of their accuracy in estimating TRF components.
- We propose novel algorithms based on Subspace Pursuit (SP) and Expectation Maximization (EM) that utilize prior knowledge to directly estimate TRF components.
- We evaluate performance on simulated and real MEG data.

Methods

TRF Model: \(y = X\beta + n \)
- \(y \): M/EEG response
- \(\beta \): TRF
- \(X \): shifted predictor, \(n \): noise

Ridge Regression: \(\beta = (X^TX + \lambda I)^{-1}X^Ty \)
- \(\beta \): greedy coordinate descent
- Incrementally build up the TRF using small changes that minimize the error

Boosting:
- Directly estimates component amplitudes
- Directly estimates component amplitudes, latencies and topographies
- Simulated responses to speech envelopes
- Realistic noise using phase scrambled real MEG responses
- Single-channel, sensor-space and source-space simulations

Performance Metrics

1. Model fit - correlation between actual and predicted signals
2. Correlation between ground truth and predicted TRFs
3. Component amplitude error
4. Component latency error
5. Component topography error (for multichannel TRFs)
6. Spurious TRF activity
7. Missing components

Simulation Study

- 30 simulated subjects with TRF component amplitudes, latencies and topographies
- Simulated responses to speech envelopes
- Realistic noise using phase scrambled real MEG responses
- Single-channel, sensor-space and source-space simulations

Results - Simulation

Single Channel TRFs

- All methods are comparable at high SNR
- SP outperforms ridge and boosting at low SNR
- Ridge has more spurious activity
- Boosting has more missing components

Sensor and Source Space TRFs

- All methods are comparable at high SNR
- EM-SP outperforms ridge and boosting, especially at low SNR
- SP alone does not perform well
- Ridge has more spurious activity
- Boosting has sparser topographies

Sensor Space TRFs

- All methods are comparable at high SNR
- EM-SP outperforms ridge and boosting
- Ridge has more missing components
- Boosting has sparser topographies

Source Space TRFs

- All methods are comparable at high SNR
- EM-SP outperforms ridge and boosting
- Ridge has more missing components
- Boosting has sparser topographies

Conclusions

- SP and EM-SP are able to detect TRF components in both simulations and real data
- SP outperforms ridge and boosting in single channel simulations
- EM-SP outperforms ridge and boosting in multi channel simulations
- EM-SP did not outperform the others on real data, perhaps due to high amounts of individual variability in TRF components, or incorrect TRF latency windows
- Ridge and boosting are comparable for most metrics
- Ridge has more spurious activity, while boosting may miss some TRF components

Results - Real Data

- Similar TRF components estimated by all algorithms
- Ridge has more spurious activity
- Boosting has sparser topographies
- Source space TRFs are much cleaner

- Model fit correlations are similar across methods
- EM-SP does not outperform the others like in the simulations
- Boosting has a slightly lower correlation than other algorithms

References

This work is available as a preprint.

Ridge TRF: M. J. Crosse et al., 'Linear Modeling of Neurophysiological Responses to Speech and Other Continuous Stimuli: Methodological Considerations for Applied Research', Frontiers in Neuroscience (2021)

