Impulse Response Estimation Methods for Modelling Neural Processing of Continuous Speech

Joshua P. Kulasingham¹ & Jonathan Z. Simon^{2,3,4}

¹Department of Electrical Engineering, Linköping University, Sweden, ²Department of Electrical and Computer Engineering,

³Institute for Systems Research, ⁴Department of Biology, University of Maryland, College Park, USA

Introduction

- Neural processing of speech involves time-locked neural mechanisms that can be detected using **MEG** or **EEG** neuroimaging.
- Linear models called **Temporal Response Functions (TRFs)** are widely used to study the **impulse response** of this neural system
- Accurate estimation of TRF components is essential for subjectspecific investigations into speech processing.

- We propose novel algorithms based on Subspace Pursuit (SP) and Expectation Maximization (EM) that utilize prior knowledge to directly estimate TRF components.
- We evaluate performance on simulated and real MEG data

Methods

TRF Model
$$y = X\beta + n$$

y: M/EEG response, β: TRF X: shifted predictor, n: noise

Ridge Regression $\boldsymbol{\beta} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

Boosting

- Greedy coordinate descent
- Incrementally build up the TRF using small changes that minimize the error

Simulation Study

- 30 simulated subjects with TRF component amplitudes, latencies and topographies
- Simulated responses to speech envelopes Realistic noise using phase scrambled real MEG responses Single-channel, sensor-space and source-space simulations

Proposed Algorithms

Subspace Pursuit (SP)

Directly estimate TRF components given component latency windows

$$\mathbf{y} = \sum_{j} a_j \mathbf{X} \mathbf{c}_j + \mathbf{n}$$

$$\mathbf{c}_j: j^{\text{th}} \text{ TRF component, } a_j: \text{ amplitude}$$

1. Calculate best component latencies within each window using the residual signal

- 2. Estimate amplitudes using Least Squares
- 3. Calculate residual signal
- 4. Repeat 1-3 until convergence

Expectation Maximization SP (EM-SP)

Extends SP for multichannel TRFs Directly estimates component amplitudes, latencies and <u>spatial topographies</u>

Results - Simulation

Single Channel TRFs

- All methods are comparable at high SNR
- SP outperforms ridge and boosting at low SNR
- Ridge has more spurious activity
- Boosting has more missing components

Sensor and Source Space TRFs

- All methods are comparable at high SNR
- EM-SP outperforms ridge and boosting, especially at low SNR
- SP alone does not perform well
- Ridge has more spurious activity
- Boosting has sparser topographies

Single Channel TRFs

Performance Metrics

- . Model fit correlation between actual and predicted signals
- 2. Correlation between ground truth and predicted TRFs
- 3. Component amplitude error
- 4. Component latency error
- 5. Component topography error (for multichannel TRFs)
- 6. Spurious TRF activity
- 7. Missing components

Results - Real Data

 $\sum \mathbf{z}_{i} (\mathbf{X}\mathbf{c}_{i})^{T} + \mathbf{N}$ Y: multichannel Y =M/EEG response

 \mathbf{z}_i : spatial topography of jth component

- 1. E-step: Estimate spatial topographies \mathbf{z}_i
- 2. M-step: Estimate prior parameters
- 3. M-step: Estimate latencies using SP
- 4. Repeat 1-3 until convergence

Real Data

- Prevolusly published MEG dataset (Presacco et. al. 2016)
- 40 subjects listening to foreground and background speech
- Sensor and source space TRFs were estimated
- Model fit correlation between actual and predicted response

Conclusions

- SP and EM-SP are able to detect TRF components in both simulations and real data
- SP outperforms ridge and boosting in single channel simulations
- EM-SP outperforms ridge and boosting in multi channel simulations
- EM-SP did not outperform the others on real data, perhaps due to high amounts of individual variability in TRF components, or incorrect TRF latency windows
- Ridge and boosting are comparable for most metrics
- Ridge has more spurious activity, while boosting may miss some TRF components

- Boosting has sparser topographies
- Source space TRFs are much cleaner
- Model fit correlations are similar across methods
- EM-SP does not outperform the others like in the simulations
- Boosting has a slightly lower correlation than other algorithms

Sensor Correlation

Source Space Correlation

References

This work is available as a preprint

J. P. Kulasingham and J. Z. Simon, 'Algorithms for Estimating Time-Locked Neural Response Components in Cortical Processing of Continuous Speech'. bioRxiv (2022)

0.06

0.02

Ξ

- Real MEG dataset: A. Presacco, J. Z. Simon, and S. Anderson, 'Evidence of degraded representation of speech in noise, in the aging midbrain and cortex', Journal of Neurophysiology (2016)
- Real MEG dataset: A. Presacco, J. Z. Simon, and S. Anderson, 'Effect of informational content of noise on speech representation in the aging midbrain and cortex', Journal of Neurophysiology (2016)
- Ridge TRF: M. J. Crosse et. al., 'Linear Modeling of Neurophysiological Responses to Speech and Other Continuous Stimuli: Methodological Considerations for Applied Research', Frontiers in Neuroscience (2021)

Boosting: S. V. David et. al., 'Estimating sparse spectro-temporal receptive fields with natural stimuli', Network: Computation in Neural Systems (2007) EM for evoked responses: T. Limpiti et. al., 'A Spatiotemporal Framework for MEG/EEG Evoked Response Amplitude and Latency Variability

Pursuit for evoked responses: C. Sieluzycki et. al., 'Single-Trial Evoked Brain Responses Modeled by Multivariate Matching Pursuit', IEEE Transactions on Biomedical Engineering, (2008)

(R01-DC014085 and R01-DC019394)