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The high temporal resolution of electro- and 
magnetoencephalography (EEG/MEG) makes them 
ideal tools to study brain responses to rapidly evolving 
continuous stimuli such as speech. Linear kernel 
estimation has been used to deconvolve EEG and MEG 
responses to continuous stimuli (see box "Linear kernel 
estimation"). However, this analysis is typically applied 
to sensor space data, not using the full neural source 
localization power of MEG. To localize responses 
anatomically, we computed distributed minimum norm 
source current estimates of continuous MEG data and 
estimated a separate response function for each virtual 
current source dipole. We then used permutation-
based tests and hierarchical clustering to find 
significant spatio-temporal patterns in the responses. 
To demonstrate this method, we analyzed the MEG 
responses of participants listening to segments of a 
story. We used predictor variables representing 
different processing steps in comprehension to show 
differences in anatomical localization. 

MEG Data
–17 Participants listened to 2 one-minute long segments 
from a narration of The Legend of Sleepy Hollow by 
Washington Irving, read by a male speaker in quiet 
background at ~70 dB SPL; each segment was repeated 3 
times for a total of 6 minutes

–An average brain model ("fsaverage", FreeSurfer) was 
scaled and coregistered to each subject's head shape

–Raw MEG data were preprocessed using temporal signal 
space projection (Taulu and Simola, 2006) and band-pass 
filtered 1-40 Hz

–MEG data epochs relative to stimulus onset, 
downsampled to 100 Hz

–Epoched data were projected to source space using 
distributed minimum norm inverse solution (approximately 
5000 virtual source dipoles, regularly spaced on the white 
matter surface, oriented perpendicular to the cortical 
surface)

Predictor variables
–Phoneme boundaries were marked using the Gentle 
forced aligner and manually adjusted using Praat

–An acoustic envelope representation was computed as 
the average of all frequency channels of a model of the 
acoustic transformations performed by the auditory 
brainstem (Yang et al., 1992)

–Word frequency was coded using log frequency values 
from the SUBTLEX database (Brysbaert and New, 2009), 
with higher values reflecting less frequent words

–Content words matching any of the patterns of semantic 
composition analyzed by Westerlund et al. (2015) were 
marked as 1, all other time points as 0

Response functions
–Response functions were estimated separately for each 
virtual current source dipole using the boosting algorithm 
(David et al., 2007)

–The response functions were assessed for spatio-
temporal patterns that differed significantly from zero using 
spatio-temporal permutation tests based on threshold-free 
cluster enhancement (Smith and Nichols, 2009)

Clustering of response functions
–Significant response functions were grouped using 
hierarchical clustering, minimizing the sum squared error 
(Ward, 1963)

–Starting with a single cluster, clusters were subdivided 
until the next split would reduce the error by less than 1% 
of the total sum squared

–Clusters that combined low amplitude sources of “halos” 
of one or more stronger clusters were visually identified 
and removed

Predictor variables:
– Acoustic envelope: acoustic power across 

frequency bands
– Word frequency: less frequent words associated 

with larger values
– Semantic composition: estimate of the amount of 

semantic integration, but correlated with other 
comprehension-related variables

Response functions
Average response functions across subject. Each black 
line reflects a single virtual current dipole. Non-
significant values were set to zero for visualization.

– Results confirm viability of analyzing continuous 
stimuli

– Allows anatomically separating brain responses to 
different stimulus properties

– Localization preserves temporally precise response 
functions (order of tens of milliseconds)

– Simultaneously sensitive to variables related to 
higher cognitive levels in speech comprehension as 
well as basic acoustic properties

– Robust responses from just 6 minutes of data
– Broadens the possibilities for studying speech 

comprehension with natural stimuli
– Applicable also to other continuous stimuli

Clustered response functions
Because of the smoothness of MEG source estimates 
(see box “Point spread function”) response functions 
are composed of multiple overlapping responses. To 
find independent sources we used hierarchical 
clustering of dipoles based on their time-course 
(separately for each predictor variable).
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– Bilateral early response 
– auditory cortex (~30 ms) 
– sensorimotor parietal and frontal cortices (~50 ms)

– Right-lateralized later response
– auditory cortex (~100 ms) 

– Strong left-lateralized response in auditory 
cortex (~170 ms)

– Later, weaker bilateral frontal response

– Left hemisphere: 
– temporal progression from anterior temporal lobe to inferior 

frontal gyrus activation
– Right-hemisphere

– similarly localized, temporally more diffuse 
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Point spread function

The theoretical accuracy of MEG source localization can be evaluated using the point spread function. Since both the 
forward model L and the inverse operator G are linear matrix operations, the source estimate of a hypothetical source 
current vector j can be computed by combining both operations, G•L•j. The source estimate for a hypothetical point 
source is the “point spread function”. Hypothetical sources are indicated by the yellow outline.
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Convolve (∗) a kernel with a sparse signal

Linear filter:

Linear kernel estimation




