

# Continuous speech and its neural representations, through auditory cortex and beyond

## Jonathan Z. Simon University of Maryland, College Park

http://www.isr.umd.edu/Labs/CSSL/simonlab





# Acknowledgements

### **Current Lab Members & Affiliates**

Shohini Bhattasali Regina Calloway Jason Dunlap Theo Dutcher Sydney Hancock Kevin Hu Neha Joshi Dushyanthi Karunathilake Joshua Kulasingham

Janani Perara Mohsen Rezaeizadeh Behrad Soleimani

### **Current & Recent Collaborators**

Samira Anderson Behtash Babadi

#### Tom Francart

L. Elliot Hong Stefanie Kuchinsky Ellen Lau Elisabeth Marsh Philip Resnik

### **Recent Lab Members & Affiliates**

Sahar Akram Ross Baehr Proloy Das Lien Decruy Nai Ding Marlies Gilles Alex Jiao Sina Miran David Nahmias Alex Presacco James Williams Peng Zan

- Anurupa Bhonsale

### **Christian Brodbeck**

- Francisco Cervantes Constantino
- Aura Cruz Heredia
- Marisel Villafane Delgado

- Krishna Puvvada
- Jonas Vanthornhout

### **Funding & Support**













# Continuous speech and its neural representations, through auditory cortex and beyond







# To Intelligibility, and Beyond!





# Continuous speech and its neural representations, through auditory cortex and beyond





## Cortical Representations of Continuous Speech

### **Continuous speech**

- naturalistic
- redundant
- employs auditory cognition
- acoustically diverse
- drives most auditory areas
- . .
- but also complicated



He was an old man who fished alone in a skiff in the Gulf Stream and he had gone eighty-four days now without taking a fish. In the first forty days a boy had been with him. But after forty days without a fish ...

If you happened to find yourself on the banks of the Ohio River on a particular afternoon in the spring of 1806—somewhere just to the north of Wheeling, West Virginia, say ...

The Botany of Desire – Michael Pollan

Alfred the Great was a young man, three-and-twenty years of age, when he became king. Twice in his childhood, he had been taken to Rome, where the Saxon nobles were in the habit of going on journeys which they supposed to be religious; ...

A Child's History of England – Charles Dickens

In the bosom of one of those spacious coves which indent the eastern shore of the Hudson, at that broad expansion of the river denominated by the ancient Dutch navigators ...

The Legend of Sleepy Hollow — Washington Irving

The Old Man and the Sea — Ernest Hemingway



## <u>Cortical Representations of Continuous Speech</u>

## Temporal neural patterns $\leq$ temporal patterns in speech

- Need high temporal precision, for fast temporal speech features
  - EEG (electroencephalography): whole brain
  - MEG (magnetoencephalography): whole brain but with strong cortical bias
  - ECoG (electrocorticography): placed cortical surface electrodes
  - single- and multi-unit recording methods: placed depth electrodes



## <u>Cortical Representations of Continuous Speech</u>

## **Neural Representations of Speech**

- driven oscillations at pitch frequencies (mostly subcortical)
  - acoustic onset tracking
    - speech envelope rhythmic following
      - phoneme-based responses
        - phoneme-context-based responses
          - sentence-structure rhythm following
            - semantic structure tracking
- plus connections to intelligibility/perception/behavior

Brodbeck & Simon (2020) Continuous Speech Processing, Curr Op Physiol

# **Cortical Representations of Speech**

- Measure time-locked responses to temporal pattern of speech features (in humans)
- Any speech feature of interest: acoustic envelope, lexical, pitch, semantic, etc.
- Infer spatio-temporal neural origins of neural responses



Brodbeck & Simon (2020) Continuous Speech Processing, Curr Op Physiol



# **Cortical Representations: Encoding**

- Predicting future neural responses from present stimulus features,
  - wide variety of stimulus features
  - via Temporal Response Function (TRF)
- Why look at encoding? It often tells us more about the brain
  - TRF analogous to evoked response
  - peak amplitude ≈ processing intensity
  - peak latency ≈ source location
  - multiple TRFs simultaneously



Example: MEG Prediction of Voxel Responses

## **Cortical Representations: Speech Envelope**

- TRF interpretable a la evoked response
  - Has M50 ("P1") & M100 ("N1") peaks, but from instantaneous speech envelope
  - early peak localizes to primary auditory areas (HG)
  - later peak localizes to associative areas (PT)
  - caveat: actually from envelope onset
- This is from a single talker, clean speech - simple but limiting
  - what about noise? other speakers? attention?
  - can the speech representation be cleaned?

Brodbeck et al. (2020) Neural Speech Restoration at the Cocktail Party ..., PLoS Biol

### Temporal Response Fields







# **Cortical Representations: Attention**

# Two competing speakers, selectively attend to one

- more illuminating since more complex auditory scene
- need more care re: "stimulus" responsible for responses
  - acoustic mixture entering ears
  - foreground speech
  - background speech
- estimate all TRFs simultaneously
  - compete to explain variance

Brodbeck et al. (2020) Neural Speech Restoration at the Cocktail Party ..., PLoS Biol



## **Cortical Representations: Language Features**

- Language-based speech features
  - phonemes
  - words & word boundaries
  - phoneme context
- All TRFs estimated simultaneously
  - compete to explain variance

Brodbeck et al. (2018) Rapid Transformation from Auditory to Linguistic Representations ..., Curr Biol







# Language-feature based TRFs

Acoustic onset







# Language-feature based TRFs





# Language-feature based TRFs





## Attention + Language-feature based TRFs



Brodbeck et al. (2018) Rapid Transformation from Auditory to Linguistic Representations ..., Curr Biol



## Attention + Language-feature based TRFs



Brodbeck et al. (2018) Rapid Transformation from Auditory to Linguistic Representations ..., Curr Biol



#### <u>Attention + Language-feature based TRFs</u> Attended acoustic model Acoustic stimulus model Unattended acoustic model $2.7 \times 10^{-02}$

 $\Delta z$ 

### See also: Gillis et al., (2021) bioRxiv Neural Markers of Speech Comprehension: Measuring EEG Tracking of Linguistic Speech Representations, Controlling the Speech Acoustics













subcortical



## Fast & Early Cortical Representations



Kulasingham et al. (2020) High Gamma Cortical Processing of Continuous Speech ..., NeuroImage











# To Intelligibility, and Beyond?

## **Cortical Representations of Speech <u>Understanding</u>**

- Behavioral correlates of speech understanding
  - implies language comprehension
  - higher order comprehension (?)
    - sentence structure
    - other structures, e.g. poetic, logical
- Neural correlates of speech understanding
  - rhythms of higher order structures, even if totally absent in the acoustics
    - sentence structures

Ding et al., Nat Neurosci 2016



## **Cortical Representations of Speech <u>Understanding</u>**

- Behavioral correlates of speech understanding
  - implies language comprehension
  - higher order comprehension (?)
    - sentence structure
    - o other structures, e.g. poetic, logical
- Neural correlates of speech understanding
  - rhythms of higher order structures, even if totally absent in the acoustics
    - sentence structures
    - poetic structures

Ding et al., Nat Neurosci 2016 Teng et al., Curr Biol 2020



## Cortical Representations of Speech <u>Understanding</u>

- Behavioral correlates of speech understanding
  - implies language comprehension
  - higher order comprehension (?)
    - sentence structure
    - other structures, e.g. poetic, logical
- Neural correlates of speech understanding
  - rhythms of higher order structures, even if totally absent in the acoustics
    - sentence structures
    - poetic structures
    - mathematical structures

Ding et al., Nat Neurosci 2016 Teng et al., Curr Biol 2020





### Acoustics



#### Acoustics sentence sentence word word word word word word word word 0 0.5 2.5 1.5 2 0 1 Time [s] Т Acoustical 0.3 Spectrum (envelope) 0 MOro 2 3 Sent



#### Acoustics sentence sentence word word word word word word word word 0 0.5 2.5 1.5 2 0 1 Time [s] Т Acoustical 0.3 Spectrum (envelope) 0 MOro 2 3 Sent



#### Acoustics sentence sentence word word word word word word word word 0 0.5 2.5 1.5 2 0 1 Time [s] Т Acoustical 0.3 Spectrum (envelope) 0 MOro 2 3 Sent



#### Acoustics sentence sentence word word word word word word word word 0 0.5 2.5 1.5 2 0 Time [s] Acoustical 0.3-Spectrum (envelope) 0 MOrd Sent 2 3







#### Acoustics sentence sentence word word word word word word word word 0 2.5 0.5 1.5 2 0 Time [s] Acoustical 0.3-Spectrum (envelope) 0 MOrd Sent 2 3





# **Isochronous** Arithmetic



Kulasingham et al. (2021) Cortical Processing of Arithmetic and Simple Sentences ..., bioRxiv



Noton

# **Isochronous** Arithmetic



Kulasingham et al. (2021) Cortical Processing of Arithmetic and Simple Sentences ..., bioRxiv



Noton

# **Isochronous** Arithmetic



Kulasingham et al. (2021) Cortical Processing of Arithmetic and Simple Sentences ..., bioRxiv



Noton















# Isochronous Cocktail Party



# Isochronous Cocktail Party



# Isochronous Cocktail Party









# **Representations of Understanding**









# **Representations of Understanding**

- Neural correlates of understanding
  - rhythms of higher order structures
    - sentence structures
    - poetic structures
    - mathematical structures
    - 0 ...



# Summary

temporal patterns in speech acoustics temporal patterns in speech perception temporal *neural* patterns  $\Longrightarrow$ temporal patterns in language perception temporal patterns in understanding

- Continuous speech allows acquiring entire hierarchy from same stimulus
- Using simultaneous TRFs allows segregation of neural processes
- How is each process linked to intelligibility/understanding?
- Which links are predictive/causal?



thank you

http://www.isr.umd.edu/Labs/CSSL/simonlab

