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Introduction

•Sound localization requires the computation of interaural time
differences (ITDs) for frequencies below a few kHz. This is
performed by binaural cells in the avian Nucleus Laminaris (NL),
and its mammalian homologue, the Medial Superior Olive (MSO).

•An “ITD discriminator” neuron should fire when inputs from two
independent neural sources coincide (or almost coincide), but not
when two inputs from the same neural source (almost) coincide.

•A biophysical model is constructed, using the program NEURON,
to examine how NL neurons detect and report ITDs, their
mechanisms and their limitations. It is based primarily on
physiology and anatomy of the chicken.

•Two versions are presented here: one with reasonable coincidence
detection/ITD discrimination, and the other, still work in
progress, with data tied to chick as closely as possible.



   
      

       
      

    

Results
•Typical chick-like parameters allow ITD discrimination up to 2 kHz.

•Typical chick-like parameters but with barn-owl-like phase locking
allow ITD discrimination up to 6 kHz.

•Two dendritic non-linearities aid ITD discrimination:

1) intra-dendritic inputs sum sub-linearly.

2) inter-dendritic interactions subtractively inhibit out-of-phase
inputs.

•Response to monaural input does not require spontaneous activity
from opposite side.

•Rate-coded ITD tuning curves convey more information than Vector-
Strength-coded curves (despite/due to Vector Strength
enhancement).

•Adjustments to tie parameters even more closely to the biology are
in progress.



   
      

       
      

    

Model Description
The model emulates an array of neurons, each with an adjustable number of dendrites, a soma, and an
axon with an axon hillock, a myelinated segment, and a node of Ranvier. Each section has an adjustable
number of equipotential compartments. All geometric, electrical, and channel parameters are
adjustable, as are the number of synapses/dendrite, the synaptic locations, and the distribution of
synaptic locations. Channel types include potassium (high [~Kv3.1] and low voltage activated
[~Kv1.1, 1.2] and delayed rectifier), sodium, and passive. Values were obtained from physiological
studies of Nucleus Magnocellularis (NM) and NL. Voltage dependent channels are specified by
Hodgkin-Huxley-like parameters. Each neuron in the array feeds into a single inhibitory neuron, which
feeds back onto all neurons in the array.

The stimulus is a pure tone of adjustable frequency, with each neuron in the array receiving a different
interaural phase difference (or contralateral monaural stimulus with variable ipsilateral spontaneous
activity). More complex stimuli can be easily introduced.

The synapses fire with conductance proportional to an alpha-function, with adjustable time constant,
peak conductance, and reversal potential. The excitatory synapses fire as individual Poisson processes,
with probability rate given by a exponentiated sinusoid, with adjustable amplitude and vector strength.
The inhibitory neuron is a simple integrate-and-fire neuron.

The implementation uses the program NEURON and has a graphical user interface for controlling
parameters and running the model. There is a real-time display of data and analysis including:
membrane potential at multiple locations, the two stimuli, synaptic firings, spike counts, period
histograms of synaptic firings and action potentials, and their vector strengths.



   
      

       
      

    

NEURON Panels

~7500 lines/100 pages of NEURON code

Stimulus Frequency (Hz) 1000

Stimulus Phase Ipsi (deg) 0

Stimulus Phase Contra (deg) 0

Stimulus Vector Strength ([0->1]) 0.43

Probability Rate (ms^-1) 0.55

Generic Parameter 1 1

Generic Parameter 2 1

Action Pot. Threshold (mV) -35

Period Histogram bins 16

Ignore spikes before (ms) 15

Cells per Array (arrays) 2

# [Ex Syn] (syn/dend) 30

Center [Ex Syn] ([0->1]) 0.5

Distribution [Ex Syn] ([0->1]) 1

tau [Ex Syn] (ms) 0.1

gmax [Ex Syn] (uS) 0.015

e [Ex Syn] (mV) -10

Duration [Ex Syn] (ms) 1

Delay [In Syn] (ms) 0.1

Integration factor [In Syn] 3

tau [In Syn] (ms) 8

gmax [In Syn] (uS) 0.03

e [In Syn] (mV) -60

# [Den] (dendrites) 2

Length [Den] (um) 68

Diameter [Den] (um) 4

Ax. Resist. [Den] (ohm cm) 200

gL [Den] (S/cm^2) 0.00028

gK LVA_m [Den] (S/cm^2) 0.003

gK HVA_m [Den] (S/cm^2) 0.12

# Compartments [Den] 10

lambda [Den] (um) 422.58

Length [Soma] (um) 15

Diameter [Soma] (um) 15

Ax. Resist. [Soma] (ohm cm) 200

gK LVA_m [Soma] (S/cm^2) 0.003

gK HVA_m [Soma] (S/cm^2) 0.03

gLeak [Soma] (S/cm^2) 0.00028

gNa_m [Soma] (S/cm^2) 0

gKHH_m [Soma] (S/cm^2) 0

# Compartments [Soma] 5

Clamp Voltage 1 (mV) 0

Clamp Duration 1 (ms) 0

Clamp Voltage 2 (mV) 0

Clamp Duration 2 (ms) (ms) 0

Clamp Voltage 3 (mV) 0

Clamp Duration 3 (ms) 0

Clamp Resistance (MOhm) 0.1

Length [Hillock] (um) 30

Diameter [Hillock] (um) 8

Ax. Resist. [Hillock]) (ohm cm) 200

gLeak [Hillock] (S/cm^2) 0.00028

gNa_m [Hillock] (S/cm^2) 0.32

gKHH_m [Hillock] (S/cm^2) 0

gK LVA_m [Hillock] (S/cm^2) 0.003

gK HVA_m [Hillock] (S/cm^2) 0.03

# Compartments [Hillock] 10

Length [Myelin] (um) 100

Diameter [Myelin] (um) 2

Ax. Resist. [Myelin] (ohm cm) 200

gLeak [Myelin] (S/cm^2) 3.5e-06

C [Myelin] (uF/cm^2) 0.0125

# Compartments [Myelin] 10

Length [Node] (um) 2

Diameter [Node] (um) 2

Ax. Resist. [Node] (ohm cm) 200

gLeak [Node] (S/cm^2) 0.00028

gNa_m [Node] (S/cm^2) 0.32

gKHH_m [Node] (S/cm^2) 0.08

# Compartments [Node] 1

Current amplitude (nA) 0

Current Delay (ms) 5

Current Duration (ms) 15

eNa (mV) 40

eK (mV) -60

eLeak (mV) -45

alpha0 HVA (ms^-1) 0.11

alphaVHalf HVA (mV) -19

alphaK HVA (mV) 9.1

beta0 HVA (ms^-1) 0.103

betaVHalf HVA (mV) -19

betaK HVA (mV) 20

alpha0 LVA (ms^-1) 0.2

alphaVHalf LVA (mV) -50

alphaK LVA (mV) 10

beta0 LVA (ms^-1) 0.17

betaVHalf LVA (mV) -50

betaK LVA (mV) 10

q10 HVA 2

T0 HVA (C) 23

q10 LVA 2

T0 LVA (C) 23

alphamVHalf Na (mV) -30

betamVHalf Na (mV) -55

alphahVHalf Na (mV) -55

betahVHalf Na (mV) -25

q10 Na 2.3

q10 KHH 2.3

/* CDlab: a coincidence detector laboratory */
/* NEURON program modeling an avian brainstem auditory coincidence detector. */
/* by Jonathan Z. Simon */
/* originally based on his project from the Woods Hole MBL course */
/* “Methods in Computational Neuroscience”.  */
/* cdlab.hoc version 4.0dxx (requires special mod files, cvode ready) */
/* formerly known as multicoincidence.hoc */
strdef versionStr
versionStr = “CD Lab v. 4.0d10"

/* copyright 1999-2001 Jonathan Z. Simon and University of Maryland */

/* We simulate cells, each with soma, an axon and some
 * number of pairs of dendrites. The stimulation is from
 * synapses on the dendrites. Each synapse fires with
 * time-dependent Poisson statistics, with probability proportional
 * to a periodic stimulus. The stimuli from each ear are identical,
 * except (in general) the phase. */

// For neuron 4.3 & above, no redefinition of template, so no loading twice.
//firstrun = (name_declared(”cdlabVersion“) != 2)
//if (firstrun) { // prep for first time
 cdlabVersion = 4.0
 dll_loaded = 0  // Load dll if necessary (mac or pc)
 if (unix_mac_pc() == 2) {dll_loaded = nrn_load_dll(”cdlabmac.dll“)} // mac
 if (unix_mac_pc() == 3) {dll_loaded = nrn_load_dll(”cdlabpc.dll“)}  // pc
 {load_file(”noload.hoc“)} // Despite name, loads the standard run libraries.
 useGraphics = 1 // if 0, can be run on unix terminal remotely, without X

//} else { // reloading
// forall delete_section()
//}

/****************
 * Declarations *
 ****************/

objref gu
// global constants & utilities

objref gpi
// global parameter info

objref gp
// global parameters

objref gr
// global run variables & procedures

objref go
// global output

objref cvode     // allows use of NetCons and
variable time step
objref timeGraphList // protect graphs from garbage
collection
strdef stimProcName         // changeable stimulus function (e.g. bin/monaural)
poissClock = -1             // if stimulus needs a (Poisson process) clock.

strdef tmpStr // for temporarily holding a string
objref tmpObj // for temporarily holding an object



   
      

       
      

    

Geometry & Connectivity
A typical model cell has 2 - 24 dendrites, each 20 -
700 mm long and 2 - 4 mm in diameter, a spherical
soma of diameter 15 mm, and an axon. Each
dendrite has 1 - 50 excitatory synapses. The axon
has an axon hillock, a segment with myelination,
and a node of Ranvier. The output feeds into an
integrate-and-fire inhibitory cell which feeds back
to all cells in the array. Every cell in the array
receives the same stimulus except for varying
interaural phase differences

Spatial intracellular potential plots 
Position down the axon, through the soma, and
down along the ipsi dendrite.

The potential up the ipsi dendrite, through the
soma, and down along the contra dendrite.
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Transverse section
through chicken
brainstem labels
both NM and NL,
and shows the
tonotopic decrease
in dendritic length
with increasing
best frequency in
NL [Microtubule
associated protein
(MAP2. FITC)
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isofrequency slab in
chick NL. Note that the
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100 200 300 400 500 1000 2000 3000 4000 5000 10000
0

20

40

60

80

100

chick

owl
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Voltage, Conductance, Inputs
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soma.v(0.5)
dendrite[0].
dendrite[1].
axonNode.v
gGraph
stimGraph[0
stimGraph[1
synIpsiGrap
synContraG

Spikes (at axon tip) 8 Spike Rate (at axon tip) 228.57 Vector Strength (at axon tip) 0.83536 Vector Phase (at axon tip) 286.76

Time Plot Space Plot Spike & Dendrite PSTHs Synapse PSTHs Parameters
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gGraph
stimGraph[0
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Spikes (at axon tip) 2 Spike Rate (at axon tip) 57.143 Vector Strength (at axon tip) 0.96246 Vector Phase (at axon tip) 263.25

Time Plot Space Plot Spike & Dendrite PSTHs Synapse PSTHs Parameters
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A pair of cells receives the same stimulus probability
distributions (here, f =1 kHz). The top receives its inputs
binaurally in-phase, and the bottom out-of-phase. 



   
      

       
      

    

contra stimulus
– ipsi stimulus

ipsi g synapses
contra g synapses

V mid-soma

V axon node

Voltage, Conductance, Inputs

Red tracks the intracellular potential in mid-soma,
magenta at the axon tip.
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Directly beneath are the pair of presynaptic stimulus
probability distributions. See figure to right for other
examples of stimulus probability distributions.

The bottom 8 curves of each graph show realized
synaptic currents (note spread from Poisson process).

Stimulus probability distributions

V contra mid-dendrite

V ipsi mid-dendrite



   
      

       
      

    

Phase Locking

These results show 1) an over-enhancement of output VS over the input VS,
making the VS-coded ITD tuning curves appear extra flat, and 2) an over-
suppression of rates for nearly out-of-phase inputs, which makes the rate-coded
ITD tuning curves look extra sharp (compared to experiment) 
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The responses to a 360
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give ITD tuning curves
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separate ITD tuning
curves.

The “rate” ITD curves
are more sharply tuned
than the “vector-
strength” ITD curves
(note that the vector
strength is not reliable
when the firing rate is
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ITD Discrimination

Discrimination
In-Phase VS 
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Discrimination = 

Good ITD discrimination
(high ratio) until ~2 kHz.
Sharp phase tuning appears
as ceiling effect on ITD
Discrimination index

At right, keeping all
parameters the same, but
using Barn Owl vector
strength gives good ITD
discrimination until ~4 kHz.
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ITD Discrimination—Barn Owl

Discrimination
In-Phase VS 
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The top plot shows ITD discrimination
using chick-like parameters, but merely
increasing the vector-strength to that of
the barn owl.
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The right plot shows ITD
discrimination going up to ~6 kHz
by simply adding more dendrites.
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Opposite dendrite’s effect is subtractive

K
+ K

+

Non-Linearities

Synaptic inputs add sub-linearly

“more inputs don’t add as much you’d think”

Both effects prevent many inputs from
right side wrongly causing cell to fire
without inputs from the left side.

Found by Agmon-Snir et al. 1998

“subtracts when nothing positive to add”

New result

Firing Rates

In-Phase

Out-of-Phase

with non-linearities without non-linearities

too many false positives

Works at all frequencies, including high Works only at low-middle frequencies

 Reduction in “false positives”



   
      

       
      

    

Sub-Linearity Results

stimulus frequency [Hz]

Esyn = –20 mV

Esyn = 10 mV

500 1000 2000
0

50100200

dendritic length [µm]

Shifting the synaptic reversal potential upwards reduces the sub-
linearity, worsening the ratio of in-phase/out-of-phase firing rates.



   
      

       
      

    

Dendritic Length

dendritic length [µm]

1414 Hz
1000 Hz
707 Hz
500 Hz
353 Hz

The Intra-dendritic
sublinearity leads to
an optimal dendritic
length, as shown by
Agmon-Snir et al.
1998

For every stimulus
frequency there is a
dendritic length,
longer than which,
performance no
longer increases.
The effect is most
pronounced at lower
frequencies.
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Subtraction Non-Linearity
dendritic length [µm]
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Normal
Dendrite removed

High K+

Note that the cells fire well with no stimulus on the opposite side. The cell is not just
a coincidence detector, it is an ITD discriminator: it does not need spontaneous
activity on the opposite side in order to fire.

The effect is present at all frequencies.
(The meeting of in- and out- rates at ~ 2 kHz is a consequence of poorly
phase-locked inputs.)

The out-of-
phase rate is
suppressed
relative to the
monaural rate.

The opposite
dendrite acts as
a current sink.

One cell/different stimuli

Different cells/same monaural stimulus
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Kv3.1 immunoreac-
tivity (red, CYC3)
in the low BF
region of NL in the
chicken outlines
the cell bodies and
proximal dendrites
of NL neurons.
NM terminals in
NL are delineated
by staining with
the synaptic vesicle
marker (SV2, green
FITC).

Synaptic vesicle
protein (SV2)
immunoreactivity
in NM in the chick-
en labels endbulb
terminals in NM

Estimating Model Parameters

a la Reyes et al 1996

Parameshwaran et al 2001
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Abstract
A biophysically detailed model of avian brainstem Nucleus Laminaris (NL)
neurons investigates the ability of a single neuron to detect when inputs from
ipsilateral and contralateral Nucleus Magnocellularis (NM) are coincident.
Coincidence detection, in concert with organized input delays, is sufficient to
encode the interaural time differences necessary to localize sound sources.
The model (written in NEURON) simulates an array of neurons, each with a
soma, an axon, and an adjustable number of dendrites (each with multiple
compartments), and with synapses of adjustable number, strength, and spatial
distribution. Channels include K (high and low voltage activated, and delayed
rectifier), Na (axon only), and leak. Neural inhibitory feedback is included.
For in vivo emulations the stimulus is a binaural pure tone with adjustable
frequency and interaural phase difference (or monaural stimulus with sponta-
neous activity). The phase-locking of NM inputs can be free or a function of
stimulus frequency.  Results from the model (both new and confirmations of
old) include: active potassium channels increase coincidence detection at high
frequencies; rate-coded output is more robust than vector-strength-coded out-
put at distinguishing coincidences from partial coincidences; phase locking of
output spikes is sharper than the phase locking of the synaptic inputs; there is
an optimal dendritic number and length per stimulus frequency, dendritic
length, and number of synapses; there is an optimal distribution of synapses
for low frequencies; the most efficient dendritic length decreases with best
frequency.  Supported by: NIH R03DC04382 (JZS) & NIH DCD 00436 (CEC)   



   
      

       
      

    

Emu
Nucleus Laminaris
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