Influence of aging on cortical auditory temporal processing of speech in noise

Hearing & Speech Sciences

Background

Older adults often report that during a conversation they can hear what is said, but cannot understand the meaning, particularly in a noisy environment. These difficulties may arise from deficits in auditory temporal processing [1]. Recent results using magnetoencephalography (MEG) [2,3] have shown the feasibility of reconstructing the envelope of speech in noisy conditions by using low frequency oscillations of the brain in younger adults. Although the effects of neural speech processing has been investigated in quiet conditions [4], little is known about how noise impacts cortical speech processing in younger vs. older adults. Here, we compared the effects of noise on cortical responses in younger and older adults with normal hearing, hypothesizing that in favorable conditions (SNR $\cong 0$ dB) differences in performance between the two age groups will be mainly linked to the fact that younger adults are better than older adults at suppressing the competing speech signal.

Materials and Method

Participants

> Participants were native speakers of English: 8 young adults $(20 - 28 \text{ years old, mean} \pm$ SD, 23.8 ± 3.1 years) and 8 older adults (60 - 68 years old, mean \pm SD, 63.3 ± 3 years).

> All participants had clinically normal hearing (≤ 25 dB HL at 125 - 4 kHz) and no history of neurological or middle ear disorders.

> Participants had normal IQ scores [mean \pm SD, 112.5 \pm 10.26 for younger adults, and mean \pm SD, 123.14 \pm 13.8 in older adults on the Wechsler Abbreviated Scale of Intelligence [5]]. > Older adults were also screened for dementia on the Montreal Cognitive Assessment (MOCA) [6] [mean ± SD, 25.875 ± 2.23].

Behavioral data

The Quick Speech-in-Noise test (QuickSIN) [7] was used to objectively measure the participant's sentence recognition in noise. Four lists were used for each participant and were averaged to produce a final score.

Fig. 1 Audiogram (mean \pm 1SE) for younger (red) and older (black) adults. The inset shows the results of the QuickSIN for each participant in ascending order (the lower the score, the better the understanding of speech in noise).

*Alessandro Presacco^{1,2}, Samira Anderson^{1,2} Jonathan Z. Simon^{2,3,4,5},

¹Hearing and Speech Sciences Department, ²Neuroscience and Cognitive Science Program, ³Biology Department, ⁴Institute for Systems Research, ⁵Department of Electrical & Computer Engineering University of Maryland, College Park, MD

*apresacc@umd.edu

Integration indow (ms)	500	450	400	350	300	250	200	150	100
Younger	***	***	***	***	***	***	***	**	N.S.
Older	***	***	**	**	*	÷	N.S.	N.S.	N.S.

	1.	Gordon-Salan
		Acoust. Soc. A
	2.	Ding and Sime
		11859
	3.	Ding and Sime
		Neurophysiol
	4.	Anderson et a
	5.	Zhu, J., Garcia
	6.	Nasreddine, Z
		mild cognitiv
	7.	Killion et al. (
		hearing-impa
	8.	De Cheveigné
	9.	De Cheveigne
	10.	Okamoto et al
	11.	Ross et al (200
		modulated to
	T	his study has he
$\mathbf{\mathbf{\nabla}}$	11	ins study hus by