Real-Time Tracking of the Selective Auditory Attention from M/EEG via Bayesian Filtering
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Cocktail Party Effect: the ability to identify and track a target speaker amid a our proposed framework for real-time attention decoding includes three modules: Experiment Specifications: * b subjects, dual-speaker setting, constant-attention and attention-switch experiments
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Dynamic Encoder/Decoder Estimation: rationale: detects significant decoder peaks 25 A
Simplified Computational Problem: In a dual-speaker environment, can we decode « consider K consecutive non-overlapping windows of length W samples * fixed-lag Sl'fi'"g wmd?w parameters: Ky, = 15f;, Kp = 1.5f;
the attentional state in real-time from the clean speech signals of the two speakers « update the encoder/decoder estimates 8, for each speaker in every window: * total attention decoding delay: 1.5s + 0.25s = 1.75s g o
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pisl e ? etoen If . ?g phy (MEG) phalography 0, = argmlnz A I||y; — x;6|; +vIi6ll, k=12 .. K Example Trial Outputs: A% o
measurements ot the listener's brain: 0 j=1 * separating power of the attention marker decreasing from case 1 to 3 e B
1 C il ) . B
L, applications in Brain-Computer Interface (BCI) systems and smart hearing aids speech envelopes (dec.) | | M/EEG covariates  (dec.) third row Shl?WS(i')”fe"ed Pi’s in the batch-mode case, where the state-space gy
o : processes all m, “’s at once 2=
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linear decoding models == linearly map M/EEG data to stimulus * y chosen by cross-validation, A chosen considering the inherent dynamics of data < speaker 1 attended » speales 1 shtended P spealen \ahteriad g S 3
linear encoding models = linearly map stimulus to a neural response from M/EEG * estimation alg.: Forward-Backward Splitting (FBS) with real-time implementation w - C)
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* reverse-correlation or stimulus reconstruction in decoding models (EEG) [2]: * compute a feature for each speaker from the set of measurements and estimated ) — &
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* important stimulus time lags in encoding models (MEG) [3][4]: M100 peak magnitude in MEG encoding models: |9k ‘ near the 100ms delay B R B R I I N B e W w % wo W w ® 5 o
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