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Abstract

Natural sounds are broadband and dynamic. To understand their encoding in primary

auditory cortex (AI), we have characterized the responses of units in AI with elementary

versions of such spectra—moving ripples. Ripples are broadband sounds with a sinusoidal

envelope along the log frequency axis, that move up or down with a constant velocity.

Speech spectra can be decomposed into a superposition of ripples with different densities
and velocities.

If AI units are linear, then it is possible to predict how a unit responds to any broadband
dynamic stimulus by first measuring its responses to all elementary ripples (i.e., measure the
ripple transfer function), and then superposing the responses to these ripples, each according
to its weight in the input. We have successfully demonstrated the linearity of AI units in the
past using ripples either stationary or moving only downward in frequency. The data
described in this poster will show that transfer functions are also separable for up-moving
ripples, but that the two transfer functions may well be different. Hence AI units are not
always fully separable, but only separable by quadrant. We shall discuss the implications of
these results and show examples of predicted and measured responses to speech.
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Summary

Important Concepts:
• Response Field (RF): range of frequencies that influence a neuron. RF is a function of time.
• Ripples: broadband sounds with sinusoidally modulated spectral envelope.
• Data analysis based on linear systems; by varying ripple frequency and velocity, we measure

the transfer function. The inverse Fourier transform gives the spectro-temporal RF (STRF).
We show predictions of single-unit responses to complex spectra, including:
• Linearity of responses to dynamic ripples: responses to upward and downward moving

ripples can be superimposed to predict responses to arbitrary combinations.
• Separability of spectral and temporal measurements of the responses: spectral properties can

be measured independently of temporal properties in some cases.
We find:
• Cells can be characterized by an STRF, separable or non-separable.
• Cells behave like a linear system: when presented with a sum of several profiles, the

response is the sum of the responses to the individual profiles.
We conclude that the combined spectro-temporal decomposition in AI is an affine wavelet

transformation of the input, in concert with a similar temporal decomposition. The auditory
profile is the result of a multistage process which occurs early in the pathway. This pattern
is projected centrally where a multiscale representation is generated in AI by STRFs with a
range of widths, asymmetries, BFs, time lags and directional sensitivities.

Natural sound
• loudness (≈ intensity)
• pitch (≈ tonal height)
• timbre (the rest, e.g.

spectral envelope)

Question: How is timbre encoded
in primary auditory cortex?
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Spectro-Temporal Transform

Ω

wx = log f

t

w = “ripple velocity”
Ω = “ripple frequency”

Fourier Transform

Inverse Transform

∫ [.] exp(±2πjΩx±2πjwt)

Real functions in the spectro-temporal domain give rise to
complex conjugate symmetric functions in the Fourier domain.

Spectrogram envelope of a
speech fragment ‘water all year’

Fourier transform of the
envelope of the spectrogram

• Frequencies are mapped along the
cochlea on a log (frequency) axis.

• Since natural sounds are dynamic, we
need a time axis.

• Therefore we use two-dimensional
functions of log(frequency) and time.

• Consider the (Fourier) space dual to the
two-dimensional spectro-temporal space.

• For linear systems, the spectro-temporal
domain and its Fourier domain are
equivalent. Analysis is often conceptually
simpler in the Fourier domain.
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Ω

wx = log f

t

Spectro-Temporal Response
Function (STRF) of a neuron

2 Dimensional Transfer
Function of the same neuron

Spectro-Temporal Response

• The spectro-temporal response field of a neuron is the usual response field made time-
dependent. Equivalently, it is the temporal impulse response for each frequency.

• Its Fourier Transform is the transfer function.

• Either can be used to predict the response to any broadband dynamic sound.

Fourier Transform

Inverse Transform

∫ [.] exp(±2πjΩx±2πjwt)
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Reconstruction

Spectrogram (log frequency)

ripple frequency (cycles/octave)

Ripple Transform (100 peaks)
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(A) The envelope of
a speech fragment is
Fourier transformed
in (B). The Fourier
transform is then
approximated by its
100 largest
components in (C)
and then inverted
back in (D), giving
an excellent
approximation to the
original envelope.

A B

C D

Ripple decomposition
of a broadband
dynamic sound
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The Ripple Stimulus

The Fourier transform of a “ripple”
has support only on a single point
(and its complex conjugate).

Ripples are broadband sounds with sinusoidally modulated spectral envelope along
the log (frequency) axis, analogous to visual gratings. 



        Center for Auditory
and Acoustic Research  

Institute for Systems Research
University of Maryland

Measurements by Ripple Frequency
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Spike events in (A) are turned into period
histograms in (B). The amplitudes and
phases give the tranfer function in (C),
which can be inverse Fourier transformed
to give Response Fields in (D).
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Spike events in (A) are turned into period
histograms in (B). The amplitudes and
phases give the tranfer function in (C),
which can be inverse Fourier transformed
to give Impulse Responses in (D).
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Spectro-Temporal Response Fields
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Examples of Experimentally obtained STRFs

Note the variety of spectral and temporal behaviors

Separable

Non-separable
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2D Fourier
Transform
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Quadrant Separability
Spectro-Temporal Domain Fourier DomainAn STRF can fall into one of

three categories:

•  Non-separable: The transfer
function is an arbitrary
(complex-conjugate symmetric)
function of ripple frequency and
ripple velocity.

• Quadrant separable: The
transfer function within each
quadrant is a product of a func-
tion of ripple frequency and a
function of ripple velocity. The
envelope of the STRF is a sim-
ple product of a function of
spectrum and a function of time.

• Fully separable: The transfer
function is the product of a func-
tion of ripple freqency and rip-
ple velocity everywhere. The
resulting STRF is a product of a
function of spectrum and a func-
tion of time.
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Linearity in Theory
Assuming linearity, the STRF predicts the response to any broadband dynamic stimulus,
including single ripples moving in either direction (first two rows) and combinations of
upward and downward moving ripples.
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Linearity in Practice

Prediction
Response

No Spikes
Spontaneous

The correlation between predicted and actual response is quite good for
most cells. Since cells cannot fire at negative rates, any prediction should
be half-wave rectified before comparing to the actual response. 
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Cortical Filter Model
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• Response fields in AI have char-
acteristic shapes both spectrally
and temporally.

• AI cells respond well only to a
small set of moving ripples
around a particular spectral peak
spacing and velocity.

• We find cortical cells with all cen-
ter frequencies, spectral
symmetries, bandwidths, latencies
and temporal impulse response
symmetries.

• Therefore AI decomposes the
input spectrum into different spec-
trally and temporally tuned
channels.

• Equivalently, a population of
cells, tuned around different mov-
ing ripple parameters, can effec-
tively represent the input spec-
trum at multiple scales.

Theoretical ripple filters used to generate a
‘cortical representation’ 
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Spectrally narrow cells pick out the fine features of the spectral profile, whereas broadly tuned
cells pick out the coarse outlines of the spectrum. Similarly, dynamically sluggish cells will
respond to the slow changes in the spectrum, whereas fast cells respond to rapid onsets and
transitions. In this manner, AI is able to encode multiple views of the same dynamic spectrum.  
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