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Summary
• In Primary Auditory Cortex (AI) of Ferrets, we have
previously characterized cells’ responses to dynamic
broad-band sounds. We found best responses to
temporal modulations from 4 to 16 Hz, and spectral
modulations from 0.4 to 1.6 cycles/octave in the
stimulus’s spectro-temporal envelope.

• The Spectro-Temporal Response Field (STRF)
explains the linear component of the response to the
spectro-temporal envelope of a broad-band sound.

• The STRF is often a good predictor of the response to
an arbitrary sound. However, previous measurements
of the STRF using sinusoidal spectro-temporal
envelopes were hampered by the time required to
accumulate data from a cell.

• We use sums of spectro-temporal sinusoids as stimuli:
these

– reduce recording time
– confirm quadrant spectro-temporal separability
– can be used to explore non-linearities
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S(t,x)= sin[2πwt + 2πΩx + φ]
x = log2[f / f0]

w = ripple velocity
Ω = ripple density
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The Ripple Domain is the Fourier
space of the spectrograms. We
probe a cell at different velocities
w and different densities Ω , and
quantify the response for up and
down-moving sounds.
Any ripple in the lower half-plane
is equivalent to a ripple in the
upper-half plane.

Ripples, or Auditory Gratings
Ripples are auditory gratings whose spectral envelope is a sinusoid along
the log(frequency) axis. At any time t and any frequency x, the amplitude
S(t,x)  is given by: 
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Examples:

In order to speed up the characterization of a cell’s response, we have used
multiple combinations of ripples, of all velocities w and densities Ω, with
random phases. Different combinations have different choices of individual
ripple phases. The range of frequencies and/or velocities is adjusted to match
the range of interest to the cells being studied. We generally use –24 Hz to 24
Hz for cortex, and –400 Hz to 400 Hz for the Inferior Colliculus.
This is a Spectro-Temporal generalization of white noise.
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(= Spike-Triggered Average)

STRF from Cross-Correlation with Noise

• C(τ, x) contains cross terms
• The cross terms have random phase and can be attenuated by

averaging over multiple, random-phase stimuli.
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Temporally Orthogonal Ripple Combinations
(TORCs)

• Stimuli are composed only of ripples with different ripple velocities.

• Each stimulus contains ripples which cover the same range of ripple
velocities, but at different ripple frequencies.

• Multiple stimuli are still needed to present a complete set of ripples.

0 cyc/oct 0.2 cyc/oct 0.4 cyc/oct-0.2 cyc/oct-0.4 cyc/oct

-1.0 cyc/oct -0.8 cyc/oct -0.6 cyc/oct-1.2 cyc/oct-1.4 cyc/oct

1.0 cyc/oct 1.2 cyc/oct 1.4 cyc/oct0.8 cyc/oct0.6 cyc/oct

Sk
TORC(t,x) =Σj  sin[2πwjt + 2πΩkx + φj,k]
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STRF from Cross-Correlation with TORCs
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Simulation

STRFest         (τ, x) = TORC Σ
j = 1

m

Cj(-τ, x)

• TORCs are better suited for temporal cross-correlation because there
are no cross terms.

• The resulting estimates are robust, use short-duration stimuli, and are
quickly computed.
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The response to an arbitrary sound is given by the convolution of the
STRF with the stimulus envelope, plus a constant.
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3rd Order Regression Curve
3rd Order Regression with Inverse-Repeat
Linear Transfer Characteristic given by STRF Estimate
Mean Spike Rate

Measured rate-level function at one τ  and x
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Non-Linearity

• The value of the STRF at each point is the slope of a linear rate-level function:
Rτ,x(t) = STRF(τ, x) ⋅ S(t-τ, x) . The instantaneous rate is given by a linear operation between the
stimulus envelope and the STRF.

• Polynomial rate-level curves can be measured at every (τ, x), and improve the description.
• The coefficients of a power series expansion of the curves are given by the diagonals of the

Volterra kernels.
• Using cubic polynomials, and inverse-repeat stimuli, we have shown that either the non-

linearities are absent, or they are restricted to second order.
• Subtraction of the response to the inverted envelope from the response to the non-inverted

envelope gives a polynomial fit dominated by the linear term.  This would be expected, for
example, from a rectifying non-linearity. 
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Rate-level functions change with τ and x.
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Third-order Volterra series expansion of an input S(t, x):

Non-linearity Theory 
• The STRF is the linear time-invariant filter governing the transformation

from stimulus to response.  Thus it can be identified with the first kernel
of a Volterra series expansion of the system.

Form of the Regression Function:
(Third-order Approximation)

• The regression functions describe the non-linearities within each
channel, but not interactions between channels.
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Use of the Regression Function
to Predict the Response:
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The true STRF is just the linear part...
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Quadratic
Linear

R̂(t) Linear

R(t)
R̂(t) Non-Linear

• Preliminary results indicate that the non-linear predictions often fit the
responses more accurately than the linear predictions, although the
differences between the two may be subtle.

Non-Linear Prediction
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