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NL neurons encode ITDs invivo
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NL neuron ITD coding BF 500Hz at 90dB

mean phase difference = -0.284 
which translates to 568 µsecs.
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    Sample ITD curves of 6 different NL 
neurons. 2 Response types of 
individual NL neuron to BF and noise. 3 
PH of NL neuron being stimulated ipsi 
and contralaterally. 4. Click delays 
match best ITD. 5. PH at best and 
worst ITDs.

Alligators are known to use vocal and nonvocal acoustic signals for 
communication at the interface between air and water (Garrick et al. 
1978). During these behaviors, sound energy is concentrated at 
frequencies at or below 1kHz.  Audition in either media may also 
play a role in orienting towards prey or conspecifics. 

	 In birds and mammals, precisely timed spikes encode the timing of acoustic 
stimuli, and arrive at an array of coincidence detectors to encode interaural time 
differences (ITD). Crocodilians are a sister group to the birds, and our studies of 
their auditory brainstem reveal similar principles of organization to birds. In vitro 
whole cell patch recordings from the cochlear nucleus magnocellularis (NM) of 
embryonic alligators revealed one or two well timed spikes in response to a 
depolarizing current injection (n=11), while coincident stimulation of the inputs to 
the dorsal and ventral dendritic layers of the nucleus laminaris (NL) (n=10) 
increased the probability of action potential generation in NL neurons, showing that 
NL neurons act as coincidence detectors. In vivo recordings from alligators between 
1-3 years old at 32C revealed units in NM and NL with best frequencies between 
100-2100Hz. Single units in and around NM (n= 48) phase locked to the auditory 
stimulus with vector strength values similar to those of birds, while binaural units 
recorded in NL (n=35) were sensitive to ITDs. NL neurons phase-locked to both 
monaural and binaural stimuli. The arrival time of phase-locked spikes in these 
neurons differed between the ipsilateral and contralateral inputs. When this disparity 
was nullified by their best ITD, the neurons responded maximally. Thus crocodilians, 
birds and mammals employ similar algorithms for ITD detection.
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Characteristic delay calculations in NL 
suggest different coding strategies

CDs were calculated by plotting the response 
of each neuron as a function of stimulus 

tone. The resulting delay curves were 
normalized and converted to IPD. Mean 

interaural phase (MP) was determined and 
plotted as a function of frequency. The y-

intercept or characteristic phase (CP) for all 
alligator NL neurons varied between ± 1, 

although most clustered about ± 0.2 cycles. 
No simple division into "peak", "slope" or 
"trough"response types could be made.

and act as coincidence detectors in vitro.
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	  This spectrogram shows a very brief, low level threat 
- a "cough". The power spectrum (right) shows the 
average intensities of the frequencies over the entire 
call. There is very little structure to the call, which 
covers a wide bandwidth of frequencies (over 20 kHz), 
but intensities are high (peak frequency: 4.80 kHz).
	 	
2    This second spectrogram shows  two hatching calls. 
The spectral structure of these calls is distinct - a 
concave, frequency modulated downsweep.  Each call 
comprises the fundamental and several detectable 
harmonics. The maximum energy of the call is not 
necessarily in the fundamental harmonic.The power 
spectraon the right show the first (a) and second (b) of 
these calls, and show peak frequencies at 1.16 kHz and 
0.90 kHz respectively.

      There are two primary cochlear nuclei in birds and 
crocodilians, nucleus angularis (NA) and magnocellularis  
(NM) (Cajal, 1908; Boord and Rasmussen, 1963; Sachs 
and Sinnott, 1978; for review see Carr, 1992) and two 
second order nuclei, nucleus laminari (NL) and the 
superior olivary nucleus (SON). In birds, NM and NA are 
the origin of two parallel ascending auditory pathways, 
with NM projecting to NL, where ITDs are first computed, 
and NA projecting to the lateral lemniscal nuclei and the 
inferior colliculus hase and sound level difference signals 
for localization in azimuth and elevation. 
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Lucifer yellow injections and current clamp tracings of NL 1  and NM 2 
neurons in a slice. Also show are 4 camera lucida recontructions of NM 
neurons. 3 cresyl violet photomicrograph of typical slide. Note the 
ipsilateral and contralateral inputs into NL, red and blue tracts, were 
stimulated separately. 4. Current clamp records of a NL neuron 
stimulated at three different time intervals. 5 Summary of spike 
probability vs.delay between stimulation of opposite NL dendrites.
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1. Two PSTH examples of NM neurons, 
note phase locking and different time 
scales. 2.  Frequency response curves of 
6 different NM neurons. 3. Period 
histogram of sample NM neuron. 4. Rate 
level response curve. 5. Vector strength 
plot of all NM neurons recorded.   
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