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Magnetoencephalography (MEG)

Non-invasive, Passive, Silent
Neural Recordings of Cortex

Simultaneous Whole-Head
Recording (~200 sensors)

Sensitivity
e high: ~100 fT (10-13 Tesla)
e low: ~10%4—~106 neurons

Temporal Resolution: ~| ms

Spatial Resolution
* coarse:~| cm
* ambiguous



MEG Phase-Locked Responses
to Slow Acoustic Modulations
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MEG Responses
Predicted by STRF Model
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Neural Reconstruction of
Speech Envelope

Speech Envelope MEG Responses
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Neural Reconstruction of
Speech Envelope

stimulus speech envelope
reconstructed stimulus speech envelope ‘
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Speech Envelope
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Decoder

(up to ~ 10 Hz)




Neural Representation
of Speech: Temporal
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Speech in Stationary Noise

Mixtures of Speech and Spectrally Matched Statonary Noise
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Speech in Stationary Noise

Mixtures of Speech and Spectrally Matched Statonary Noise
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Ding & Simon, J Neuroscience (2013)



Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Ding & Simon, J Neuroscience (2013)



Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope

‘1S

Contrast Index ,
Reconstruction Accuracy

Hﬂﬂnn_ p

Q +6 +2 -3 -6 -9
SNR (dB)

correlation

0 Q +6 +2 -3 -6 -9
SNR (dB)
Ding & Simon, J Neuroscience (2013)



Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Noise-Vocoded Speech

natural 8-band 4-band
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Noise-Vocoded Speech:
Results

8-channel, in quiet 4-channel, in quiet 8-channel, in noise
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Cortical Speech
Representations

Neural Representations: Encoding & Decoding
Linear models: Useful & Robust

Speech Envelope only

Envelope Rates:~ | - 10 Hz

Intelligibility linked to lower range of
frequencies (Delta)



Listening to Speech at
the Cocktail Party




Listening to Speech at
the Cocktail Party

Springer Handbook of Auditory Research

John C. Middlebrooks
Jonathan Z. Simon
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Listening to Speech at
the Cocktail Party




Listening to Speech at
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Two Competing Speakers
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Selective Neural
Encoding

€ MI.



Selective Neural
Encoding
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Unselective vs. Selective
Neural Encoding
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Stream-Specific
Representation

reconstructed
_ / from MEG
attending to
speaker 1
P \ attended speech

envelopes



Stream-Specific
Representation
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Single Trial Speech
Reconstruction

Attended Speech Reconstruction
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Single Trial Speech
Reconstruction

Attended Speech Reconstruction Background Speech Reconstruction
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F1

Forward STRF Model

Spectro-Temporal
Response Function
(STRF)



STRF Results
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STRF Results
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Neural Sources

*M100sTtrF SOUrce near . | eft Right
(same as?) M100 O ,
source: @ [ M50strr
Planum Temporale % | M1 00sTRE

*M50sTRF SOUrCE IS M100

anterior and medial
to M100 (same as
M507?):

/7 e

posterior

Heschl’s Gyrus

*PT strongly affected by
attention, but not HG

Ding & Simon, PNAS (2012)

medial



Three Competing
Speakers
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Foreground vs. Background
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Backgrounds vs. Background

Integration Window Background Representations
Late Times Only
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Backgrounds vs. Background

Integration Window Background Representations
Late Times Only
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Backgrounds vs. Background

Integration Window kground Representations
Late Times Only
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Foreground vs. Background
Early vs. Late

Late (PT)
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Foreground vs. Background
Early vs. Late

0.35;
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HG represents attended and unattended

speech with almost equal fidelity



Younger vs. Older Adults
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Younger vs. Older Adults

Over-Representation
in Older Cortex
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Older Enlarged Response
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Older Enlarged Response
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Older Enlarged Response
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Younger vs. Older Adults

Temporal Integration

Younger Adults Older Adults
CCD * %
-— *h Lk
O .
S 025 . 025, 1N Quiet
= In Quiet
n
-
8 0.2+ 0.2+ nnﬂ
o 7 with ey
0 C " Competing a
S ois OMPEHNg . 01s- Speaker
> Speaker
O o
Q
O o 0.1t
500 400 300 200 100 500 400 300 200 100

Integration window (ms)

Presacco et al.,] Neurophysiol (2016a)



Younger vs. Older Adults

Temporal Integration
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Neural vs Inhibitory Control
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Neural vs Inhibitory Control

Reconstruction Accuracy
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Missing Speech Restoration

® (an sustained, strongly non-stationary, speech be “restored’?
» Might be aided by contextual knowledge/familiarity
» Might be aided by strong rhythmicity



Missing Speech Restoration

® (an sustained, strongly non-stationary, speech be “restored’?
» Might be aided by contextual knowledge/familiarity
» Might be aided by strong rhythmicity
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Missing Speech: Context

Replay

frequency
ntrol

High

Medium

® Hypothesis: contextual knowledge of missing speech
can be controlled by exposure to the speech



Missing Speech Restoration

® (an sustained, strongly non-stationary, speech be “restored’?
» Might be aided by contextual knowledge/familiarity
» Might be aided by strong rhythmicity
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Missing Speech
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Reconstruction from Ngise
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Missing Speech
“Reconstruction”

Reconstruction from Ngise
*

I

* Decoding of the
missing speech
improves with prior
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Summary

® Cortical representations of speech
- representation of envelope (up to ~10 Hz)
- robust against a variety of noise types

- robust against competing speech!

® Object-based representation at |00 ms latency
(PT), but not by 50 ms (HG)

® Aging shows over-representation (and time
integration deficits)

® Applies to acoustically missing internal speech
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