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Cortical Representations of Speech
» Magnetoencephalography (MEG)
» Encoding vs. Decoding

Cortical Representations of Speech in
Stationary Noise

Cortical Representations of Speech in “Cocktail
Party” listening

Cortical Representations of Internal Speech



Magnetoencephalography (MEG)

Non-invasive, Passive, Silent
Neural Recordings

Simultaneous Whole-Head
Recording (~200 sensors)

Sensitivity
e high: ~100 fT (10-13 Tesla)
e low: ~10%4—~106 neurons

Temporal Resolution: ~| ms

Spatial Resolution
* coarse:~| cm
* ambiguous



Neural Signals & MEG

Photo by Fritz Goro

*Direct electrophysiological measurement

*not hemodynamic
*real-time
*No unigue solution for distributed source
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*Measures spatially synchronized
cortical activity

*Fine temporal resolution (~ 1 ms)

*Moderate spatial resolution (~ 1 cm)



Time Course of MEG Responses
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MEG Phase-Locked Responses
to Slow Acoustic Modulations
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MEG Responses
to Speech Modulations

Auditory /

Model




MEG Responses
Predicted by STRF Model

Linear Kernel = STRF
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Neural Reconstruction of
Speech Envelope

Speech Envelope MEG Responses
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(up to ~ 10 Hz)




Neural Reconstruction of
Speech Envelope

Speech Envelope
Decoder
W\/V\/” -
(up to ~ 10 Hz)

stimulus speech envelope
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Speech Envelope
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Cortical Representation
of Speech: Temporal

Q M:.
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® Cortical Representations of Speech in
Stationary Noise



Speech in Stationary Noise

Mixtures of Speech and Spectrally Matched Statonary Noise
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Speech in Stationary Noise

Mixtures of Speech and Spectrally Matched Statonary Noise Contrast Index
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope

1s
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Noise-Vocoded Speech

natural 8-band 4-band
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Noise-Vocoded Speech:
Results

8-channel, in quiet 4-channel, in quiet 8-channel, in noise
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Cortical Speech
Representations

Neural representation as seen via decoding
Speech envelope only (as seen in MEG)
Envelope Rates:~ | - 10 Hz

Intelligibility linked to lower range of
frequencies (Delta)
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® Cortical Representations of Speech in “Cocktail
Party” listening



Listening to Speech at
the Cocktail Party




Listening to Speech at
the Cocktail Party




Listening to Speech at
the Cocktail Party




Listening to Speech at
the Cocktail Party




EXPeriment
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‘competing speech



Selective Neural
Encoding
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Selective Neural
Encoding




Unselective vs. Selective
Neural Encoding




Selective Neural
Encoding




Stream-Specific
Representation
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Single Trial Speech
Reconstruction

Attended Speech Reconstruction
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Single Trial Speech
Reconstruction

Attended Speech Reconstruction Background Speech Reconstruction
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Overall Speech
Reconstruction
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Fr

Forward STRF Model

Spectro-Temporal
Response Function
(STRF)
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Forward STRF Model

Spectro-Temporal
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STRF Results
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*STRF separable (time, frequency)
*300 Hz - 2 kHz dominant carriers
*M50sTRF positive peak

*M100sTrrF Negative peak



STRF Results
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STRF Results
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*STRF separable (time, frequency)
*300 Hz - 2 kHz dominant carriers
*M50sTRF positive peak

*M100sTrrF Negative peak

*M100strF strongly modulated
by attention, but not M50strF
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Neural Sources

*M100strF source near | eft Right
(same as?) M100 O , .
source: Eg - M50sTrRF
Planum Temporale % | M1 00sTRE

*M50sTRF SOUrce IS M100

anterior and medial
to M100 (same as
M507?):

/7 e

posterior

Heschl’'s Gyrus medial

Planum Temporale source strongly modulated by attention,
but not Heschl’s Gyrus source
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® Cortical Representations of Internal Speech



Missing Speech Restoration

® (an sustained, strongly non-stationary, speech be “restored’?
» Might be aided by contextual knowledge/familiarity
» Might be aided by strong rhythmicity



Missing Speech Restoration
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Missing Speech Restoration

® (an sustained, strongly non-stationary, speech be “restored’?
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Missing Speech: Context

Replay

frequency
ntrol

High

Medium

® Hypothesis: contextual knowledge of missing speech
can be controlled by exposure to the speech



Missing Speech
“Reconstruction”

* Can missing speech be “reconstructed’?

* Does reconstruction of missing speech depend on prior
experience with the missing speech!?



Missing Speech
“Reconstruction™

Reconstruction from Noise
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Missing Speech
“Reconstruction”

Reconstruction from Noise
* *

I

* Decoding of the
missing speech
improves with prior
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Summary

® Cortical representations of speech
- representation of envelope (up to ~10 Hz)

- robust against a variety of noise types

® Object-based cortical representation
- at 100 ms latency (PT), but not by 50 ms (HG)

® Even missing/internal speech can be
“reconstructed”



Thank You
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