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Neurons in primary auditory cortex (AI) in the ferret (Mustela putorius)
that are well described by their spectrotemporal response field (STRF) are
found also to have a distinctive property that we call temporal symmetry.
For temporally symmetric neurons, every temporal cross-section of the
STRF (impulse response) is given by the same function of time, except
for a scaling and a Hilbert rotation. This property held in 85% of neurons
(123 out of 145) recorded from awake animals and in 96% of neurons (70
out of 73) recorded from anesthetized animals. This property of tempo-
ral symmetry is highly constraining for possible models of functional
neural connectivity within and into AI. We find that the simplest models
of functional thalamic input, from the ventral medial geniculate body
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(MGB), into the entry layers of AI are ruled out because they are incom-
patible with the constraints of the observed temporal symmetry. This is
also the case for the simplest models of functional intracortical connec-
tivity. Plausible models that do generate temporal symmetry, from both
thalamic and intracortical inputs, are presented. In particular, we propose
that two specific characteristics of the thalamocortical interface may be
responsible. The first is a temporal mismatch between the fast dynamics
of the thalamus and the slow responses of the cortex. The second is that
all thalamic inputs into a cortical module (or a cluster of cells) must be
restricted to one point of entry (or one cell in the cluster). This latter
property implies a lack of correlated horizontal interactions across corti-
cal modules during the STRF measurements. The implications of these
insights in the auditory system, and comparisons with similar properties
in the visual system, are explored.

1 Introduction

The spectrotemporal response field (STRF) is one measurement used to
describe how an auditory neuron responds to a spectrally dynamic sound
(Aertsen & Johannesma, 1981b; Eggermont, Aertsen, Hermes, & Johan-
nesma, 1981; Hermes, Aertsen, Johannesma, & Eggermont, 1981; Johan-
nesma & Eggermont, 1983; Smolders, Aertsen, & Johannesma, 1979). It is
related to the spectral response area of a neuron, defined roughly as the
range of frequencies and intensities of pure tones that elicit excitatory or in-
hibitory responses (though response area measurements are blind to timing
information within the responses). The STRF is a measure of the spectral
and dynamic properties of auditory response areas and has been used in a
variety of auditory areas in both mammals and birds and using a variety of
stimuli ranging from simple (e.g., auditory ripples), to complex (e.g. natu-
ral sounds; Aertsen & Johannesma, 1981a; deCharms, Blake, & Merzenich,
1998; Epping & Eggermont, 1985; Escabi & Schreiner, 2002; Fritz, Shamma,
Elhilali, & Klein, 2003; Kowalski, Versnel, & Shamma, 1995; Linden, Liu,
Sahani, Schreiner, & Merzenich, 2003; Miller, Escabi, Read, & Schreiner,
2002; Qin, Chimoto, Sakai, & Sato, 2004; Rutkowski, Shackleton, Schnupp,
Wallace, & Palmer, 2002; Schafer, Rubsamen, Dorrscheidt, & Knipschild,
1992; Schreiner & Calhoun, 1994; Sen, Theunissen, & Doupe, 2001; Shamma
& Versnel, 1995; Shamma, Versnel, & Kowalski, 1995; Theunissen, Sen, &
Doupe, 2000; Valentine & Eggermont, 2004; Yeshurun, Wollberg, & Dyn,
1987).

The stimuli and techniques, adapted from studies of visual processing
(De Valois & De Valois, 1988) and psychoacoustic research (Green, 1986;
Hillier, 1991; Summers & Leek, 1994), apply linear and nonlinear systems
theory to measure the response area of auditory units. From the systems
theoretic point of view, the spike train output (averaged over many trials)
is determined by the spectrotemporal profile of a broadband, dynamic,
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Figure 1: (a) A simulated fully separable STRF, with spectral and temporal
one-dimensional cross-sections as inserts (all horizontal slices have the same
profile, as do vertical slices). (b) A simulated high-rank STRF with no particular
symmetries. (c) A simulated temporally symmetric and quadrant-separable
STRF of rank 2. This STRF’s symmetry is not obviously visible. This STRF was
created by adding to the STRF in a the same STRF except with the spatial cross-
section shifted upward by 3/4 octave and the temporal cross-section Hilbert-
rotated (see below) by 30 degrees.

acoustic input (Depireux, Simon, & Shamma, 1998). As can be seen from
the example in Figure 1, the STRF includes quantitative information shaping
how the neuron determines its firing rate as a function of both spectrum
(a vertical cross-section gives firing rate as a function of frequency at some
moment in time) and time (a horizontal cross-section gives firing rate as a
function of time for a single frequency).

There are also analogs of the STRF in other sensory modalities. The
most prominent are in vision, where the STRF (De Valois & De Valois,
1988) partially inspired the study of auditory STRFs, and the somatosensory
domain (DiCarlo & Johnson, 1999, 2000, 2002; Ghazanfar & Nicolelis, 1999).
Any other sensory modality with the concept of a spatial receptive field
or response area can be generalized to include the dimension of time and
stands to gain from the methodology (Ghazanfar & Nicolelis, 2001; Linden
& Schreiner, 2003).

Using spectrotemporally rich stimuli and systems analysis methods,
STRFs of hundreds of units in AI (primary auditory cortex) in the anes-
thetized and awake ferret have been measured, mapped, and compared to
those obtained from one- and two-tone stimuli (Depireux, Simon, Klein, &
Shamma, 2001; Klein, Simon, Depireux, & Shamma, 2006). For these tech-
niques to be useful requires that responses to such broadband stimuli have
a robustly linear component, an assumption that has been investigated,
and, in many types of cells, confirmed (Escabi & Schreiner, 2002; Klein
et al., 2006; Kowalski, Depireux, & Shamma, 1996; Schnupp, Mrsic-Flogel,
& King, 2001; Shamma et al., 1995; Theunissen et al., 2000). Robustness
requires at least that when the STRF is measured using stimulus sets
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with very different spectrotemporal profiles, the STRF is (approximately)
independent of stimulus set (Klein et al., 2006). The most important con-
sequence of linearity, the superposition principle (Papoulis, 1987), requires
that the responses to combinations of spectrotemporal envelopes be linearly
additive and predictable from the STRF. These results were successfully ap-
plied to predictions of responses to spectra composed of multiple moving
ripples (Klein et al., 2006; Kowalski et al., 1996). It should be noted that
many researchers have also observed a significant proportion of units that
are unpredictable or poorly responsive and cannot be described by purely
linear assumptions (Theunissen et al., 2000; Ulanovsky, Las, & Nelken,
2003). Nor does a response that is robustly linear disallow nonlinearities:
neurons with a substantially linear component typically contain substantial
nonlinearities as well, such as having firing rates above the mean with a
much larger dynamic range than firing rates below the mean. In particular,
response profiles typically have strong, static nonlinearities, and yet their
linear response is still robust (van Dijk, Wit, Segenhout, & Tubis, 1994).

In this work, we show that those neurons in AI that are well described by
STRFs have a special property, which we call temporal symmetry. Temporal
symmetry means that all temporal cross-sections of any STRF are the same
time function (i.e., impulse response), except for a scaling and a Hilbert ro-
tation (defined below). We further show that temporal symmetry has strong
implications for the functional neural connectivity of neurons in AI, in both
their thalamic input—from the ventral medial geniculate body (MGB)—and
their intracortical inputs. In fact, most simple, otherwise compelling models
of functional neural connectivity of neurons in AI are disallowed physio-
logically because they violate the property of temporal symmetry. Other
models, still biologically plausible, are suggested that obey the temporal
symmetry property.

Most of the mathematical treatments discussed in this work arose from
the context of linear systems. It is crucial, however, that the linear systems
treatment itself lies in the context of the more general nonlinear framework,
for example, of Volterra and Wiener (Eggermont, 1993; Rugh, 1981). Thus,
although the system has strong nonlinearities in addition to its linearity, as
long as the linear component of the overall response is robust, the estimated
STRF itself should be robust. This robust STRF, with its property of temporal
symmetry, can justifiably be used to strongly constrain models of neural
connectivity in AI. To reiterate, the presence of strong nonlinearities is
consistent with the presence of a robust linear component, and that robust
linear component (here, the STRF) places strong constraints on models of
neural connectivity.

2 Methods

2.1 Defining the Spectrotemporal Response Field. In the auditory sys-
tem, the STRF is a function of both time and frequency, h(t, x), where t is
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response time (e.g., in ms) and x = log2( f
/

f0) is the number of octaves
above a reference frequency f0. The firing rate of the neuron r (t) has a lin-
ear component rlin(t) given by the linear, temporal convolution of its STRF,
h(t, x), with the spectrotemporal envelope of the stimulus s(t, x):

rlin(t) =
∫

dt′
∫

dx s(t′ − t, x)h(t′, x)

=
∫

dx s(t, x) ∗t h(t, x), (2.1)

where ∗t means convolution in the t-dimension (but not x). The full firing
rate r (t) will differ from the linear rate rlin(t) to the extent that the system is
not entirely linear, but the STRF determines all of the firing rate that is linear
with respect to the spectrotemporal envelope of the stimulus (Depireux et
al., 1998). Crucially, even if the system has strong nonlinearities, so long
as the linear properties are robust, rlin(t) will be consistently determined
entirely by the STRF and the spectrotemporal envelope of the stimulus.

There are several straightforward interpretations of the STRF, all ul-
timately equivalent. Four are presented below. The first two interpret the
two-dimensional STRF as a collection of one-dimensional response profiles.
The third interprets the entire STRF as the spectrotemporal representation
of an optimal (acoustic) stimulus. The fourth is a general qualitative scheme
for predicting the response to any broadband stimulus from the STRF.

2.1.1 Spectral Response Field Interpretation. Any STRF cross-section at a
single moment in time (i.e., a vertical cross-section) can be interpreted as
an instantaneous spectral response field (see Figure 2a, bottom left). In this
interpretation, a peak in the response field indicates a high (instantaneous)
spike rate when the stimulus has enhanced power in that spectral band. A
dip in the response field indicates a low (instantaneous) spike rate when the
stimulus has enhanced power in that spectral band (e.g., from side-band
inhibition). A cross-section can be examined at any instant in time, so the
STRF can be interpreted as a time-evolving response field.

2.1.2 Impulse Response Interpretation. Any STRF cross-section at a single
frequency (i.e., a horizontal cross-section) can be interpreted as a narrow-
band impulse response (see Figure 2a, top right). In this interpretation, the
impulse response is the response to the instantaneous presentation of high
power in a narrow band. There is a separate impulse response for every
frequency channel, so the STRF can be interpreted as a spectrally ordered
collection of impulse responses.

2.1.3 Optimal Stimulus Interpretation. The entire STRF can be interpreted
as a whole by flipping the time axis and interpreting the new image as
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Figure 2: (a) An experimentally measured STRF, with several spectral and tem-
poral one-dimensional cross-sections. (b) The same STRF interpreted as the
spectrogram of an optimal stimulus. (c) An intricate stimulus and how different
areas of the stimulus spectrogram contribute to the neuron’s firing rate at any
given moment (single unit/awake: z004b03-p-tor.a1-2).

proportional to the spectrogram of a stimulus. In this picture, stimulus time
evolves (from left to right), growing less negative until it stops at t = 0 (see
Figure 2b). The stimulus is optimal in a very specific sense: of all stimuli with
the same power, the (linear estimate of the) stimulus that gives the highest
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spike rate for that power is proportional to the time-reversed STRF. This
is a straightforward result from linear systems theory (see, e.g., deCharms
et al., 1998; Papoulis, 1987).

2.1.4 General Qualitative Interpretation. The response of the entire neu-
ron to any broadband stimulus can be estimated by convolving features of
the stimulus spectrogram with features of the STRF (see Figure 2c). Regions
of the STRF that are positive (excitatory) will contribute positively to the
firing rate when the stimulus has enhanced power in that spectral band (en-
hanced relative to the background stimulus level). Similarly, regions of the
STRF that are negative (inhibitory) will contribute negatively to the firing
rate when the stimulus has enhanced power in that spectral band. Natu-
rally, regions of the STRF that are positive (excitatory) will also contribute
negatively to the firing rate when the stimulus has diminished power in
that spectral band (diminished relative to the background stimulus level).
Less intuitive, but still natural, regions of the STRF that are negative (in-
hibitory) will contribute positively to the firing rate when the stimulus has
diminished power in that spectral band (since the tendency to reduce firing
rate is itself weakened). The firing rate at any given moment is the sum of
all these products, with the appropriate weighting. This last interpretation
is really just a verbal description of equation 2.1.

2.2 Measuring the STRF. The STRF can be estimated in many differ-
ent ways, but all are equivalent to inverting equation 2.1, that is, cross-
correlating the full neural response rate r (t) with the spectrotemporal en-
velope of the stimulus s(t, x). This is also known as spike-triggered aver-
aging. Many types of stimuli can be used to measure an STRF as long as
they are sufficiently spectrotemporally rich. Among the stimuli used are
auditory ripples (e.g., Depireux et al., 1998; Kowalski et al., 1996; Miller
& Schreiner, 2000; Qiu, Schreiner, & Escabi, 2003), auditory m-sequences
(Kvale & Schreiner, 1997), random chords (e.g., deCharms et al., 1998; Valen-
tine & Eggermont, 2004), and spectrotemporally rich natural sounds (e.g.,
Theunissen et al., 2000).

2.3 Relationship to Vision and the Spatiotemporal Response Field.
The visual system has neurons that are well characterized by the analo-
gous quantity, the STRF, h(t, �x), whose arguments are the two-dimensional
angular distance, �x and time t, and whose temporal convolution with a
Spatiotemporal stimulus, s(t, �x) (e.g., drifting contrast gratings), gives the
linear firing rate of the cell:

rl (t) =
∫

d�x s(t, �x) ∗t h(t, �x), (2.2)
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which is the same as equation 2.1 but with retinotopic position �x instead of
cochleotopic position x.

All the methodology, above and below, relevant to STRFs h(t, x) also ap-
plies to STRFs h(t, �x), with the following substitutions: x → �x, � → ��, and
�x → �� · �x. The applications below will apply only to the extent that cor-
tical visual processing is comparable to cortical auditory processing and to
their respective physiological properties, and, of course, which area within
cortex is being characterized.

Stimuli used to calculate visual STRFs must have contrast that changes
in both space and time. Typical stimuli range from drifting contrast grat-
ings, randomly changing dots or bars, m-sequences, or more complex pat-
terns (see, e.g., De Valois, Cottaris, Mahon, Elfar, & Wilson, 2000; De Valois
& De Valois, 1988; Reid, Victor, & Shapley, 1997; Richmond, Optican, &
Spitzer, 1990; Sutter, 1992; Victor, 1992). These spatiotemporally rich stimuli
can be compared to the spectrotemporally rich auditory stimuli described
above (auditory ripples, random chords, and spectrotemporally rich natural
sounds).

We use the abbreviation STRF to apply to both spectral (auditory) and
spatial (visual) cases. Context will make clear to which case it refers.

2.4 Rank and Separability. The rank of a two-dimensional function,
such as an STRF or a spectrotemporal modulation transfer function (MTFST),
captures one aspect of how simple the function is. When a two-dimensional
function is the simple product of two one-dimensional functions, that is,
h(t, x) = f (t)g(x), this captures an important notion of simplicity. When this
occurs, the function is of rank 1. When the sum of two products is required,
for example, h(t, x) = f A(t)gA(x) + fB(t)gB(x), the function is of rank 2. (In
cases of rank 2 and higher, we demand that each temporal function fi (t) be
linearly independent of every other temporal function f j (t), and the same
for the spectral functions g; otherwise, we could have used a smaller number
of terms.) A rank 2 function is clearly not as simple as a rank 1 function
but nevertheless can be expressed rather concisely. In general, the rank of
any two-dimensional function is the minimum number of simple products
needed to describe the function. (When the functions are approximated as
discrete, the definition of rank is identical to the definition of the algebraic
rank of a matrix.)

An STRF of rank 1, also called fully separable, can be written

hFS(t, x) = f (t)g(x), (2.3)

which has this simple interpretation: the temporal processing of the STRF
is performed independent of the spectral processing (and, of course, vice
versa). A simple model of a neuron with this property is that its spectral
processing is due purely to inputs from presynaptic neurons with a range
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of center frequencies, while the temporal processing is due to integration
in the soma of all inputs arriving from all dendrites. For many periph-
eral neurons, this model is a good one. An STRF of rank 1 is also called
fully separable because its processing separates cleanly into independent
spectral and temporal processing stages. The example STRF in Figure 1a is
fully separable, and this can be verified by noting that all spectral (verti-
cal) cross-sections have the same shape (the shape of the spectral function
g(x)), differing only in amplitude (and possible sign). Similarly, all temporal
(horizontal) cross-sections have the same shape (the shape of the temporal
function f (t)), differing only in amplitude (and possibly sign).

An STRF of rank 2 is somewhat less simple and somewhat less straight-
forward to interpret.

h R2(t, x) = f A(t)gA(x) + fB(t)gB(x). (2.4)

One interpretation comes from noting that this h R2(t, x) can be writ-
ten as the sum of two fully separable STRFs, hF S

A (t, x) = f A(t)gA(x) and
hF S

B (t, x) = fB(t)gB(x). This implies a possible, but less than satisfying, in-
terpretation: the neuron has exactly two neural inputs, each of which has a
fully separable STRF, and then simply adds them. Below we present more
realistic interpretations, consistent with known physiology. An STRF de-
scribed by a generic two-dimensional function would not necessarily have
the same physiologically motivated interpretations or models.

An STRF of general rank N can be written

h RN(t, x) = f A(t)gA(x) + fB(t)gB(x) + · · · + fZ(t)gZ(x)︸ ︷︷ ︸
N terms

. (2.5)

As the rank of an STRF increases, more and more complexity is permitted.
Figure 1b demonstrates a simulated STRF of high rank (though still well
localized in time and spectrum). STRFs of this complexity are not seen in AI
(Klein et al., 2006). In general, higher rank implies more STRF complexity.
Lower rank suggests there is a specific property (constraint) that causes this
simplicity.

2.5 Singular Value Decomposition Analysis of the STRF. Singular
value decomposition (SVD) is a method that can be applied to any finite
dimensional matrix (e.g., a discretized version of the STRF) to establish both
its rank and a unique reexpression of the matrix as the sum of terms whose
number is the rank of the matrix (Hansen, 1997; Press, Teukolsky, Vettering,
& Flannery, 1986). The SVD decomposition of a matrix M takes the form

Mij = �AuAiv
T
Aj + �BuBiv

T
B j + · · · + �ZuZiv

T
Zj︸ ︷︷ ︸

N terms

, (2.6)
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where N is the rank of the matrix, u and v are vectors normalized to have
unit power, and each � is the term’s root mean square (RMS) power. If
we discretize the STRF into a finite number of frequencies and time steps,
x = {xi } = (x1, . . . , xM) and t = {tj } = (t1, . . . , tN), so that h(ti , xj ) = {

hij
} =

h(t1, . . . , tN; x1, . . . , xM), we see that

hij = �AuA(xi )vA(tj ) + �BuB(xi )vB(tj ) + · · · + �ZuZ(xi )vZ(tj )︸ ︷︷ ︸
N terms

, (2.7)

where N is the rank of the STRF, the u and v vectors are normalized to
have unit power, and each � is the RMS power of its term. This is the same
as equation 2.5, except that time and frequency have been discretized, and
thus the STRF has been discretized also.

What makes SVD unique among decompositions is that (1) it automati-
cally orders the terms by decreasing power: �A > �B > · · · > �Z; (2) each
column uA, uB, . . . , uZ is orthogonal to all the others; and (3) each row
vT

A, vT
B , . . . , vT

Z is orthogonal to all the others. The mathematical specifics
are described well in textbooks (see, e.g., Press et al., 1986) and will not be
covered here. Mathematically, SVD is intimately related to principal com-
ponent analysis (PCA), and both are used for a variety of analytic purposes,
including noise reduction (Hansen, 1997).

Since measured STRFs are made with noisy measurements (the noise
arising from both neural variability and instrument noise), the true rank
of the STRF must be estimated. There are a variety of methods to do this
(Stewart, 1993), but all use the same conceptual framework: once the power
of the noise is estimated, then all SVD components with power greater
than the noise can be considered signal, and the number of components
satisfying this criterion is the estimate of the rank. This estimate of rank is
biased (more noise results in a lower rank estimate), but it has been shown
that for range of signal-to-noise ratios and the STRFs used in this study,
noise is not an impediment to measuring high rank (Klein et al., 2006).

SVD also motivates us to recast equation 2.5 into its continuous form,

h RN(t, x) = �AvA(t)uA(x) + �BvB(t)uB(x) + · · · + �ZvZ(t)uZ(x)︸ ︷︷ ︸
N terms

, (2.8)

where the u and v functions have unit power and each � is the RMS
power of its term. Compared to equation 2.5, it more complex but less
arbitrary: decompositions of the form of equations 2.3, 2.4, and 2.5 are not
unique since amplitude can be arbitrarily shifted between the temporal and
spectral components. In equation 2.8, all amplitude information is explicitly
shared within each term by each �i coefficient. When the technique of
SVD, which is designed for discrete matrices, is applied to continuous two-
dimensional functions, as in the case of equation 2.8, it is called the singular
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value expansion (Hansen, 1997). We will go back and forth between the
continuous and discretized versions of the STRF without loss of generality
(so long as N is finite), depending on which formalism is more beneficial.

2.6 Hilbert Transform and Partial Hilbert Transforms and Rotations.
We now discuss the Hilbert transform, a standard tool in signal processing
and necessary for the phenomenon of temporal symmetry.

The Hilbert transform of a function produces the same function but with
all its phase components shifted by 90 degree. This can be seen in the Fourier
domain. For a function f (t) with Fourier transform F (ω), that is,

F (ω) =Fω [ f (t)] =
∫

dt f (t)e−jωt

f (t) =F−1
t [F (ω)] = (2π )−1

∫
dωF (ω)ejωt, (2.9)

the Hilbert transform, designated by H or ∧, is defined by

f̂ (t) = H [ f (t)] = F−1
t

[
sgn(ω)e jπ/2 F (ω)

]
, (2.10)

where e jπ/2 = j is a rotation by 90 degree in the complex plane (the role
of sgn(ω) guarantees that the Hilbert transform of a real function is itself a
real function). This rotation of phase by 90 degree means that the Hilbert
transform of any sine wave is a cosine wave, and the Hilbert transform of
any cosine wave is the negative sine wave, but unlike differentiation, the
amplitude is unchanged by the operation.

An important property of the Hilbert transform is that it is orthogonal to
the original function, and yet it still has the same frequency content (aside
from the DC component, i.e., its mean, which is zeroed out). f̂ (t) is said to
be “in quadrature” with f (t); a demonstration is illustrated in Figure 3.

For the remainder of this section, we assume that any function f (t) that
will be Hilbert transformed has mean zero (or has had its mean subtracted
manually).

The double application of a Hilbert transform, since applying two suc-
cessive 90 degree rotations is equivalent to one 180 degree rotation, is just a
sign inversion.

H[H[ f (t)]] = ˆ̂f (t) = − f (t). (2.11)

It is also useful to define a partial Hilbert transform. A Hilbert transform
of a function can be viewed as a 90 degree rotation in a mixing angle plane,
so one can define a partial version of the transform:

f θ (t) = sin θ f̂ (t) + cos θ f (t). (2.12)
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Figure 3: An example of a function and its Hilbert transform. (a) A function
(in black) overlaid with its Hilbert transform (in gray); the two are orthogonal.
(b) The magnitude of the Fourier transform of the function (in black) overlaid
with the magnitude of the Fourier transform of its Hilbert transform (in gray);
they overlap exactly. (c) The phase of the Fourier transform of the function (in
black) overlaid with the phase of the Fourier transform of its Hilbert transform
(in gray). The difference is exactly ±90 degrees (dashed line).

In this convention, note that f̂ (t) = f π/2(t), f (t) = f 0(t), and ˆ̂f (t) =
f π (t) = − f (t). Thus, a partial Hilbert transform still has the same frequency
content as the original function, but its phase “rotation” is not restricted to
90 degrees and can be any angle on the complex plane.

Physiological examples of the Hilbert transform have been demonstrated
in the visual system and have been named “lagged” cells (De Valois et
al., 2000; Humphrey & Weller, 1988; Mastronarde, 1987a, 1987b). These
lagged cells are located in the lateral geniculate nucleus (LGN), one of the
visual thalamic nuclei. We will continue this nomenclature and call any
neuron whose impulse response is the Hilbert transform of another the
lagged version of the latter. We will further generalize and call any neuron
whose impulse response is the partial Hilbert transform (Hilbert rotation)
of another, the “partially lagged” version of the latter. Note that the lag is a
phase lag, not a time lag.

The full and partial Hilbert transform or rotation is not restricted to
the time domain and is equally applicable to the spectral domain—for
example,

H [g(x)] = ĝ(x) (2.13)

H [H [g(x)]] = ˆ̂g(x) = −g(x) (2.14)

gθ (x) = sin θ ĝ(x) + cos θg(x). (2.15)
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2.7 Temporal Symmetry. An important class of STRFs consists of those
for which all temporal cross-sections (i.e., each cross-section at a constant
spectral index xc) of the given STRF are related to each other by a simple
scaling, g, and rotation, θ , of the same time function,

h(t, xc) = gxc f θxc (t), (2.16)

where each scaling and rotation can depend on xc . Since this is then true for
all spectral indices x, we call the system temporally symmetric and write it
in the functional form

hT S(t, x) = g(x) f θ (x)(t). (2.17)

The meaning is still the same: all temporal cross-sections are related
to each other by a simple scaling and rotation of the same time function.
There is only one function of t, that is, f (t), and Hilbert rotations of it
(demonstrated in Figure 4).

Using the definition of the Hilbert rotation, equation 2.12, we can reex-
press equation 2.17 to explicitly show that a temporally symmetric STRF is
rank 2 (i.e., is the sum of two linearly independent product terms):

hT S(t, x) = g(x) f θ (x)(t)

= g(x) cos θ (x) f (t) + g(x) sin θ (x) f̂ (t)

= f (t)gA(x) + f̂ (t)gB(x) (2.18)

where

gA(x) = g(x) cos θ (x)

gB(x) = g(x) sin θ (x)
(2.19)

tan θ (x) = gB(x)
gA(x)

g2(x) = g2
A(x) + g2

B(x).

We will often use the form of equation 2.18, which is completely equiv-
alent to equation 2.17. In equation 2.18 it is explicit that a temporally sym-
metric STRF has rank 2 and cannot have higher rank.

For systems that are not exactly temporally symmetric but are of rank 2
or for systems that have been truncated by SVD to rank 2, we can define an
index of temporal symmetry, ηt . This index ranges from 0 to 1, where ηt = 1
for the temporally symmetric case and ηt = 0 when the two time functions
are temporally unrelated. First we put equation 2.18, which is explicitly
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Figure 4: (a) The simulated temporally symmetric and quadrant-separable
STRF from Figure 1c and five fixed-frequency cross-sections, corresponding to
five temporal impulse responses. (b) The same five impulse responses but indi-
vidually Hilbert-rotated and rescaled. (c) The same Hilbert-rotated and rescaled
impulse responses superimposed. The Hilbert rotation phases were calculated
by taking the negative phase of the complex correlation coefficient between
the analytic signal of each temporal cross-section and the analytic signal of the
fourth temporal cross-section.

rank 2, into the form of equation 2.8:

h R2(t, x) = �AvA(t)uA(x) + �BvB(t)uB(x). (2.20)

Since the u and v functions have unit power, we define the index of
temporal symmetry to be the magnitude of the normalized complex inner
product between the two temporal analytic signals (Cohen, 1995),

ηt =
∣∣∣∣
∫

1
2

(vA(t) + j v̂A(t))∗ (vB(t) + j v̂B(t)) dt
∣∣∣∣ , (2.21)

where ∗ is the complex conjugate operator. The rank 1 case, since it is
automatically temporally symmetric, is also given the value ηt = 1.
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Temporal symmetry’s cousin, spectral symmetry, can be defined analo-
gously:

hSS(t, x) = f (t)gθ (t)(x)

= f (t) cos θ (t)g(x) + f (t) sin θ (t)ĝ(x)

= f A(t)g(x) + fB(t)ĝ(x), (2.22)

where

f A(t) = f (t) cos θ (t)

fB(t) = f (t) sin θ (t)

tan θ (t) = fB(t)
f A(t)

f 2(t) = f 2
A(t) + f 2

B(t) (2.23)

and

ηs =
∣∣∣∣
∫

1
2

(uA(x) + j ûA(x))∗ (uB(x) + j ûB(x)) dx
∣∣∣∣ . (2.24)

2.8 Spectrotemporal Modulation Transfer Functions (MTFST). Just as
any STRF may have the property of temporal or spectral symmetry, it may
also have the property of quadrant separability. Quadrant separability is
most easily described in terms of the spectrotemporal modulation transfer
function (MTFST), which is presented here.

The STRF, which is two-dimensional, can also be represented by its two-
dimensional Fourier transform or its closely related partner, the MTFST ,

H(w,�) =Fw,� [h(t,−x)]

=
∫

dt
∫

dx h(t, x)e2π j(−wt+�x) (2.25)

where w and � are the coordinates Fourier-conjugate to t and x respectively
(see Depireux et al., 1998 for sign conventions). Examples are shown in
Figure 5.

It follows that the inverse Fourier transform of H(w,�) gives the STRF
of the cell.

h(t, x) = F−1
t,−x [H(w,�)] . (2.26)
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The MTFST is a Fourier transform of the STRF and is also used to char-
acterize auditory processing. For example, to the extent that the STRF rep-
resents a stimulus that the neuron prefers, the Fourier transform provides
an analytical description of the features of that stimulus. Power at low w,
which has dimension of cycles per second or Hz, corresponds to smoother
temporal features, or slower temporal evolution. Power at high w corre-
sponds to finer temporal features and faster temporal resolution. Lower

Figure 5: (a) The simulated fully separable MTFST generated by the STRF in
Figure 1a. Phase is given by hue (scale on right) and amplitude by intensity.
Since the STRF is fully separable, the MTFST is separable as well in both am-
plitude (all horizontal slices have the same intensity profiles, as do vertical
slices) and phase. Separability leads to a phase profile that is the direct sum of a
purely temporally dependent phase and a purely spectrally dependent phase.
When the phase is primarily linear, as it is for STRFs well localized in spectrum
and time, the phase profile is diagonal, with slope determined by the location
in spectrum and time of the STRF. (b) The simulated MTFST generated by the
high-rank STRF in Figure 1b. Phase as in a . Since there is no particular symme-
try in the STRF, there is no particular symmetry in the MTFST. To the extent that
the STRF is localized in spectrum and time, the phase slope is approximately
constant. (c) The simulated MTFST generated by the temporally symmetric and
quadrant-separable STRF of rank 2. The symmetry is now more visible than in
Figure 1. This MTFST is somewhat directionally selective: quadrant 2 (character-
izing responses to sounds with an upward spectral glide) is strong and clearly
separable within the quadrant; quadrant 1 (characterizing responses to sounds
with an downward spectral glide) is weak. Quadrants 3 and 4 are the complex
conjugates of quadrants 1 and 2, by equation 2.27.

Figure 6: (a) An STRF equal to the sum of two simulated fully separable STRFs,
identical to each other except translated in time and spectrum (the one with
lower best frequency and shorter delay is displayed in Figure 1a). This results
in a (not fully separable) strongly velocity-selective STRF. (b) The MTFST of the
STRF in a . The spectrotemporal modulation transfer function is clearly not a
vertical column–horizontal row product within each quadrant, and therefore
the entire spectrotemporal modulation transfer function cannot be quadrant
separable. Because the spectrotemporal modulation transfer function is not
quadrant separable, it cannot be temporally symmetric. Phase is given by hue
(scale on right); amplitude is given by intensity. (c) An STRF equal to the sum
of two simulated temporally symmetric STRFs: identical to each other except
translated in time and spectrum (the one with higher best frequency and shorter
delay is displayed in Figure 1c). (d) The first ten singular values (from SVD) of
the STRF show a rank of 4, which cannot be temporally symmetric (temporal
symmetry requires a rank of 2).
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(versus higher) �, which has dimensions of cycles per octave, corresponds
to smoother (versus finer) scale spectral features, such as broad (versus
sharp) peaks or formants (versus harmonics).

The four possible sign combinations of w and � break the MTFST into
four quadrants, numbered 1 (w,� > 0), 2 (w < 0,� > 0), 3 (w,� < 0), and
4 (w > 0,� < 0). From equation 2.25 it can be seen that H(w,�) is a complex
valued function. Because h(t, x) is purely real, the MTFST has a complex-
conjugate symmetry,

H(−w,−�) = H∗(w,�). (2.27)

Equation 2.27 also holds for the Fourier transform of any real function
of t and x. This means that the value of the MTFST at any point in quadrant
3 is fully determined by the value at the reflected point in quadrant 1 (and
similarly for the pair quadrant 4 and quadrant 2).

The MTFST, and its properties and interpretations, is discussed in greater
detail elsewhere (Depireux et al., 1998, 2006).

2.9 Directionality and Quadrant Separability. When the STRF is sep-
arable, the MTFST is separable, because the Fourier transform of the STRF
is given by the simple products of the Fourier transforms of f (t) and g(x).
It was noticed that even when the STRF is not separable, the quadrants
of the MTFST are still individually separable (Klein et al., 2006; Kowalski
et al., 1996), but neither the significance nor the origin of this property
was well understood. (See McLean & Palmer, 1994, for the analogous case
in vision.) With the discovery of temporal symmetry and the relationship
between temporal symmetry and quadrant separability, the significance is
now clear, as will be shown.

One of the most useful properties of the Fourier representation (the
MTFST) over the spectrotemporal representation (the STRF) is that in the
Fourier representation, the contributions of the response to stimuli with
upward- and downward-moving spectral features are explicitly segregated
in different quadrants. The response to any downward-moving compo-
nent is governed entirely by the MTFST in quadrant 1, and the response
to any upward-moving component is governed entirely by the MTFST in
quadrant 2.

Quadrant separability is a particular generalized symmetry property
that an STRF and its MTFST may have, but it is obvious only when seen
in the MTFST domain: within each quadrant, the MTFST is separable. For
example in quadrant 1, where both w and � are positive, the MTFST is the
simple product of a horizontal (temporal) function and a vertical (spectral)
function. Similarly, in quadrant 2, where w is negative and � is positive,
the MTFST is the simple product of a different horizontal (temporal) func-
tion and a different vertical (spectral) function. An example is shown in
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Figure 5c. Quadrant separable MTFSTs are defined and characterized with
more mathematical detail in the appendix.

Historically in audition, the property of quadrant separability was no-
ticed when the spectrotemporal modulation transfer function measured in
quadrant 1 was separable, and the spectrotemporal modulation transfer
function measured in quadrant 2 was also separable, but the two separable
functions were not the same (Depireux et al., 2001; Kowalski, Depireux,
& Shamma, 1996) (if it is separable in quadrants 1 and 2, then it is au-
tomatically separable in quadrants 3 and 4, from equation 2.27). In vision
studies, quadrant separability was invoked for the notion of directional se-
lectivity (Watson & Ahumada, 1985). In this work, we argue that quadrant
separability in the auditory system is due entirely to temporal symmetry.

Quadrant separability is a property of both the STRF and the MTFST,
though visible only in the MTFST. Nevertheless, since the STRF and MTFST

are just different representations of the same response properties, it is a
property that is held (or not) by both. It is shown in the appendix that a
quadrant-separable STRF can always be written in the form

hQS(t, x) = f A(t)gA(x) + f̂ B(t)ĝB(x) + f̂ A(t)gB(x) + fB(t)ĝA(x), (2.28)

which is shown in the appendix to be of rank 4 unless additional symme-
tries, such as those discussed later, reduce the rank to 2 or 1.

2.10 Quadrant Separability and Temporal Symmetry. Comparing
equation 2.28 to equation 2.18 we can see that the temporally symmetric
hT S(t, x) has the same form as hQS(t, x) for the special case that fB(t) = 0.
Thus, a temporally symmetric STRF is automatically quadrant separable. It
is not a generic quadrant-separable STRF, since its rank is not 4 but 2 (by
inspection of equation 2.18). It nevertheless possesses the defining property
of quadrant separability: each quadrant of its MTFST is separately separable
(e.g., see Figure 5c). We will use this property below to show that an STRF
that is not quadrant separable cannot be temporally symmetric.

2.11 Quadrant Separability and General Symmetries. There are three
ways of taking the generic quadrant-separable STRF of rank 4 and finding
a generalized symmetry that causes it to be lower rank.

The generalized symmetry of temporal Hilbert symmetry has already
been discussed. It can be seen by taking the most general form of a quadrant-
separable STRF, equation 2.28, and noting that setting fB(t) = 0 = f̂ B(t), so
that only f A(t) and f̂ A(t) survive as temporal functions, reduces the number
of independent components (i.e., the rank) from 4 to 2.

The generalized symmetry of spectral symmetry works analogously,
since the mathematics is blind to the difference between time and spectrum.
It can be seen by noting that setting gB(x) = 0 = ĝB(x), so that only gA(x) and
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ĝA(x) survive as spectral functions, also reduces the number of independent
components (i.e., the rank) from 4 to 2. This gives the spectrally symmetric,
quadrant-separable STRF:

hSS(t, x) = f A(t)gA(x) + fB(t)ĝA(x). (2.29)

We are not aware of any physiological system in which this generalized
symmetry is realized.

Finally, a third generalized symmetry is pure directional selectivity. In
the case of this generalized symmetry, we set

f A(t) = f̂ B(t)

gA(x) = ĝB(x), (2.30)

which, when combined with the identity that the double application of the
Hilbert operator is a Hilbert rotation of 180 degrees and so is equivalent to
multiplication by −1, gives

hDS(t, x) = 2
(

f A(t)gA(x) − f̂ A(t)ĝA(x)
)
. (2.31)

This is the case much discussed in the vision literature when STRF is inter-
preted as the visual STRF: both temporal and spectral functions are added in
quadrature (Adelson & Bergen, 1985; Barlow & Levick, 1965; Borst & Egel-
haaf, 1989; Chance, Nelson, & Abbott, 1998; De Valois et al., 2000; Emerson &
Gerstein, 1977; Heeger, 1993; Maex & Orban, 1996; McLean & Palmer, 1994;
Smith, Snowden, & Milne, 1994; Suarez, Koch, & Douglas, 1995; Watson
& Ahumada, 1985). The result is a purely directionally selective response
field, and again is rank 2.

These three symmetries reduce the rank of a quadrant-separable spec-
trotemporal modulation transfer function from 4 to 2. In the appendix, it
is proven these are the only symmetries that can reduce the rank to 2, and
that a quadrant-separable STRF can never be of rank 3 (the rank 1 case is
fully separable).

We are not aware of any physiological system that possesses a generic
quadrant separable STRF, that is, of rank 4.

2.12 Counterexamples. After the preceding examples, one might be
tempted to believe that all rank 2 STRFs are also quadrant separable, but
this can be shown false with a simple counterexample.

The form of equation 2.28 demonstrates how difficult it is to make a
quadrant-separable transfer function by combining fully separable inputs:
half of the terms are required to be very specific functionals of the other
half. Any departure leads to total inseparability. For example, an STRF that
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is the linear sum of two separable STRFS,

h R2(t, x) = hF S
A (t, x) + hF S

B (t, x), (2.32)

has a spectrotemporal modulation transfer function that is the linear sum
of two separable spectrotemporal modulation transfer functions:

H R2(w,�) = H R2
A (w,�) + H R2

B (w,�). (2.33)

This is not, in general, the form of a quadrant-separable spectrotemporal
modulation transfer function. As an example, the sum of two (almost) iden-
tical, fully separable STRFs whose only difference is that one is translated
spectrally and temporally with respect to the other gives an STRF that is
strongly velocity selective and is not quadrant separable. This is demon-
strated in Figure 6b, where the MTFST clearly is not quadrant separable.
This proves that the STRF in Figure 6a cannot be temporally symmetric.

It is also simple to show an example of an STRF that is the sum of two
temporally symmetric STRFs but itself is not temporally symmetric. As an
example, the sum of two (almost) identical, temporally symmetric STRFs
whose only difference is that one is translated spectrally and temporally
with respect to the other gives an STRF that has rank 4, not the rank of
2 required by temporally symmetry. This is demonstrated in Figures 6c
and 6d.

2.13 Surgery and Animal Preparation. Data were collected from 11
domestic ferrets (Mustela putorius) supplied by Marshall Farms (Rochester,
NY). Eight of these ferrets were anesthetized during recording, and de-
tails of the surgery in full procedural details are provided in Shamma,
Fleshman, Wiser, and Versnel (1993). These ferrets were anesthetized with
sodium pentobarbital (40 mg/kg) and maintained under deep anesthesia
during the surgery. Once the recording session started, a combination of
ketamine (8 mg/kg/hr), xylazine (1.6 mg/kg/hr), atropine (10 µg/kg/hr),
and dexamethasone (40 µg/kg/hr) was given throughout the experiment
by continuous intravenous infusion, together with dextrose, 5% in Ringer
solution, at a rate of 1 cc/kg/hr, to maintain metabolic stability. The ecto-
sylvian gyrus, which includes the primary auditory cortex, was exposed
by craniotomy, and the dura was reflected. The contralateral ear canal was
exposed and partly resected, and a cone-shaped speculum containing a
miniature speaker (Sony MDR-E464) was sutured to the meatal stump. The
remaining three ferrets were used for awake recordings, with full surgi-
cal procedural details in Fritz et al. (2003). In these experiments, ferrets
were habituated to lie calmly in a restraining tube for periods of up to 4 to
6 hours. A head-post was surgically implanted on the ferret’s skull (anes-
thetized with sodium pentobarbital, 40 mg/kg, and maintained under deep
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anesthesia during the surgery) and used to hold the animal’s head in a
stable position during the daily neurophysiological recoding sessions. All
experimental procedures were approved by the University of Maryland
Animal Care and Use Committee and were in accord with NIH Guidelines.

2.14 Recordings, Spike Sorting, and Selection Criteria. Action poten-
tials from single units were recorded using tungsten microelectrodes with
5 to 7 M� tip impedances at 1 kHz. In each animal, electrode penetrations
were made orthogonal to the cortical surface. In each penetration, cells were
typically isolated at depths of 350 to 600 µm corresponding to cortical lay-
ers III and IV (Shamma et al., 1993). In four anesthetized animals, neural
signals were fed through a window discriminator, and the time of spike
occurrence relative to stimulus delivery was stored using a computer. In
the other seven animals, the original neural electrical signals were stored
for further processing off-line. Using Matlab software designed in-house,
action potentials were then manually classified as belonging to one or more
single units, and the spike times for each unit were recorded. The action
potentials assigned to a single class met the following criteria: (1) the peaks
of the spike waveforms exceeded four times the standard deviation of the
entire recording; (2) each spike waveform was less than 2 ms in duration
and consisted of a clear, positive deflection followed immediately by a neg-
ative deflection; (3) the spike waveform classes were not visibly different
from each other in amplitude, shape, or time course; (4) the histogram of
interspike intervals evidenced a minimum time between spikes (refractory
period) of at least 1 ms; and (5) the spike activity persisted throughout the
recording session. This procedure occasionally produced units with very
low spike counts. After consulting the distribution of spike counts for all
units, units that fired less than half a spike per second were excluded from
further analysis since a neuron with such a low spike rate requires longer
stimulus durations to analyze.

2.15 Stimuli and STRF Measurement. The stimuli used were tempo-
rally orthogonal ripple combinations (TORCs), as described by Klein et al.
(2006). TORCs are more complex than individually presented dynamic rip-
ples, which are instances of bandpassed noise whose spectral and temporal
envelopes are cosinusoidal and can be thought of as auditory analogs of
drifting contrast gratings used in vision studies (Shamma & Versnel, 1995;
Shamma et al., 1995). The spectrotemporal envelope of a TORC is com-
posed of sums of the spectrotemporal envelopes of temporally orthogonal
dynamic ripples. Temporally orthogonal means that no two ripple compo-
nents of a given stimulus share the same temporal modulation rate (their
temporal correlation is zero); therefore, each component evokes a different
frequency in the linear portion of the response. Each TORC spectrotemporal
envelope is composed from six dynamic ripples having the same spectral
density � (in cyc/oct) but different w spanning the range of 4 to 24 Hz. In the
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reverse-correlation operation, the 4 Hz response component is orthogonal
to all stimulus components besides the 4 Hz ripple, the 8 Hz component
is correlated only with the 8 Hz ripple, and so on. Fifteen distinct TORC
envelopes are presented, with spectral density � ranging from −1.4 cycles
per octave to +1.4 cycles per octave in steps of 0.2 cycles per octave. Each
of those 15 TORCS is then presented again but with the reverse polarity of
its spectrotemporal envelope (the inverse-repeat method) to remove sys-
tematic errors due to even-order nonlinearities (Klein et al., 2006; Moller,
1977; Wickesberg & Geisler, 1984). Multiple sweeps were presented for each
stimulus. Sweeps of different stimuli, separated by 3 to 6 s of silence, were
presented in a pseudorandom order, until a neuron was exposed to between
55 and 110 periods (13.75–27.5 s) of each stimulus. All stimuli had an 8 ms
rise and fall time. All stimuli were gated and fed through an equalizer into
the earphone. Calibration of the sound delivery system (to obtain a flat fre-
quency response up to 20 kHz) was performed in situ with the use of a 1/8
in Brüel & Kjaer 4170 probe microphone. In the anesthetized case, the mi-
crophone was inserted into the ear canal through the wall of the speculum
to within 5 mm of the tympanic membrane; the speculum and microphone
setup resembles closely that suggested by Evans (1979). In the awake case,
the stimuli were delivered through inserted earphones that were calibrated
in situ at the beginning of each experiment.

STRFs were measured by reverse correlation, that is, spike-triggered
averaging (Klein, Depireux, Simon, & Shamma, 2000; Klein et al., 2006).
In particular, only the sustained portions of the responses were analyzed,
since the first 250 ms interval of poststimulus onset response was not used.
To ensure reliable estimates, neurons with STRFs whose estimated signal-
to-noise-ratio was worse than 2 were excluded (Klein et al., 2006).

3 Results

3.1 Temporal Properties of the STRF. In an arbitrary STRF, the spec-
tral and temporal dimensions of the response are not necessarily related in
any way. For example, the temporal cross-sections (impulse responses) at
different frequencies (x) need not be systematically related to each other in
any specific manner. However, Figure 7 illustrates an unanticipated result
that we found to be prevalent in our data: all temporal cross-sections of a
given STRF are related to each other by a simple scaling and rotation of
the same time function. For example, if we designate the impulse response
at the best frequency (1.2 kHz) to be the function f (t) = f θ=0(t) = f 0(t),
then the cross-section at 0.72 kHz is approximately its scaled inverse
(≈ −0.50 f (t) = 0.50 f π (t)); at 0.92 kHz, it is the scaled and lagged version
(≈ 0.33 f π/2(t))). A schematic depiction of this STRF response property is
shown in Figure 7. This property was defined above, in equation 2.18, to be
temporal symmetry. In the following section, we quantify and demonstrate
the existence of this response property in almost all of our neurons.
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In general, a pure scaling (i.e., no rotation, θ = 0 among the temporal
cross-sections of the STRF is expected if the STRF is fully separable, that is,
it can be decomposed into one product of a temporal and a spectral function:
hF S(t, x) = f (t)g(x). However, only 50% of our cells can be considered fully
separable in the awake population and 67% in the anesthetized population;
the remainder all not fully separable. Consequently, this highly constraining
and ubiquitous relationship involving a scaling and a rotation, described
mathematically by equation 2.18, must imply another basic characteristic of
cell responses, as we discuss next.

3.1.1 Rank and Temporal Symmetry in AI. To examine spectrotemporal
interactions, we applied SVD analysis to all STRFs derived from AI neurons
in our experiments (see Klein et al., 2006, for the method), with results in
Table 1. In the awake recordings, the STRF rank was found to be best approx-
imated as rank 1 or 2 for 98% of the neurons and in the anesthetized case,
97%. That is, the STRF is of the form of either equation 2.3 or equation 2.4.
In general, an STRF need not be of such a low rank at all. For example,
Figure 1b shows an otherwise plausible simulated high-rank STRF. Does
low rank reflect a simplicity to the underlying neural circuitry?

In the awake recordings, STRFs of rank 1 constituted 50% of all neu-
rons; in the anesthetized recordings, STRFs of rank 1 constituted 67% of
all neurons. These STRFs are fully separable, and hence all temporal cross-
sections of a given STRF are automatically related by a simple scaling. For
rank 2 STRFs (awake 48%, anesthetized 30%), however, there is no such
relationship. In fact, for a rank 2 STRF, expressed as equation 2.4, there is
no mathematical need for any particular relationship between its temporal
cross-sections, but physiological evidence provides some.

The experimental results for neurons with STRF of rank 2 in Figure 8a
highlight a strong relationship between the temporal functions f A(t) and
fB(t) isolated by the SVD analysis in equation 2.4, and compared via the

Figure 7: Temporal symmetry demonstrated in the experimentally measured
STRFs of 2 example neurons. (a) A rank 2 (not fully separable) STRF and five
fixed-frequency cross-sections, giving five temporal impulse responses. (b) The
same five impulse responses but Hilbert-rotated and rescaled to have equal
power to that of the impulse response at the best frequency (left panel) and
the same Hilbert-rotated and rescaled impulse responses superimposed (right
panel). The temporal symmetry index for this neuron is ηt = 0.90. (c) Another
rank 2 STRF, and five cross-sections (left panel), and the corresponding five
impulse responses, Hilbert-rotated, rescaled to have equal power, and super-
imposed. This temporal symmetry is ηt = 0.73, illustrating that the temporal
symmetry index need not be overly close to unity to demonstrate temporal
symmetry (single units/awake: D2-4-03-p-c.a1-3, R2-6-03-p-2-a.a1-2).
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Table 1: Population Distributions of STRFs Recorded from All Neurons, Ac-
cording to Animal State (Awake/Anesthetized), STRF Rank, and Temporal
Symmetry.

Awake Anesthetized

Number Percent Number Percent

Rank 1 72 50 49 67
Rank 2 70 48 22 30

Temporally symmetric 51 21
Nontemporally symmetric 19 1

Rank 3 3 2 2 3
Total 145 100 73 100
Rank 1 + rank 2 temporally symmetric 123 85 70 96
Rank 2 nontemporally symmetric + rank 3 22 15 3 4
Total 145 100 73 100

temporal symmetry index defined in equation 2.21. A temporal symmetry
index near 1 means that f A(t) and fB(t) are not arbitrary, but instead are
closely related by a Hilbert transform. Comparing equation 2.4 and the last
line of equation 2.18, we see that we must have:

fB(t) = f̂ A(t). (3.1)

Temporal symmetry in an STRF is an extremely restrictive property. SVD
guarantees that fB(t) be orthogonal to f A(t), but does not restrict its
frequency content in any substantive way (Stewart, 1990, 1991, 1993).
fB(t) = f̂ A(t) is special since f̂ A(t) is the only function orthogonal to f A(t)
that has the same frequency content as f A(t). In this sense, there is only one
time function in the STRF, the one characterized by f A(t). This is not the case
in the spectral dimension, where there is no single special spectral function
picked out: gA(x) and gB(x) are mathematically and physiologically uncon-
strained: the population distribution for the analogous spectral symmetry
index in Figure 8b shows no such close relationship. There is no evidence for
spectral symmetry. Note also that fully separable (rank 1) neurons are not
included in the population shown in Figure 8 since they are automatically
temporally symmetric and spectrally symmetric.

Alternatively, we can begin with the STRF in the form of equation 2.17
and explain why the temporal cross-sections in our STRFs exhibit the spe-
cific relationship depicted in Figure 7. The impulse response at any x can be
thought of as a linear combination of f A(t) and f̂ A(t), which by equation 2.18
always gives a scaled version of a Hilbert-rotated f A(t).

Another test for the presence of temporal symmetry arises from compar-
ing STRFs approximated by two different means: the first two terms of the
singular value expansion versus the first term of the quadrant-separable
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Figure 8: The population distributions of the symmetry indices for all neurons
with rank 2 (not fully separable) STRFs: awake N = 70 (black), and anesthetized
N = 22 (gray). (a) The population distributions of temporal symmetry index.
The populations are heavily biased toward high temporal symmetry; cf. the
temporal symmetry index of the STRFs in Figure 7, which ranges from 0.73
to 0.90. In the awake population, 51 neurons had temporal symmetry index
greater than 0.65 and 20 in the anesthetized population. (b) For comparison, the
same statistics but for spectral symmetry. The population is spread over the full
range of values, despite potential tonotopic arguments for a narrow distribution
near 1.

expansion in singular values (see Klein et al., 2006, for details). The for-
mer (rank 2 truncation) is of rank 2 by construction. The latter (quadrant-
separable truncation), since it is quadrant separable by construction, should
be of rank 4 unless the STRF has a symmetry. Since there is no mathemat-
ical reason they should give the same result, the near-unity correlation
coefficient between the two shown in Figure 9a is experimental evidence
that they are identical up to measurement error: the quadrant-separable
STRF is actually of rank 2 and therefore possesses a symmetry. The only
quadrant-separable STRFs with rank less than 4 must be temporally sym-
metric, spectrally symmetric, or directionally selective. The results shown
in Figure 8b rule out spectral symmetry, and the analogous analysis for the
index of directional selectivity (not shown) rules out directional selectivity.
Therefore, STRFs’ symmetry must be temporal symmetry.

For comparison, Figure 9b shows two other distributions. On the right is
the same distribution as above, but for rank 4 truncations instead of rank 2.
The correlations decrease, indicating that rank 2 (and hence temporal sym-
metry) is a better estimate than rank 4 (generic quadrant-separable STRFs
are of rank 4, and only symmetric STRFs are of rank 2). The change must
be small, since SVD orders contributions to the rank by decreasing power,
but it need not have been negative. In the center of Figure 9b is the distri-
bution of the same quantity as in Figure 9a, but with the STRFs permuted:
the rank 2 truncation of the STRF is correlated with the quadrant-separable
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Figure 9: (a) The population distributions of the correlations for all rank 2 neu-
rons between their rank 2 and quadrant-separable estimates: awake (black) and
anesthetized (gray). The high correlations indicate that the quadrant-separable
truncation may be of rank 2, evidence of temporal symmetry. (b) For com-
parison, the distributions of the comparable correlations. (Right) The popu-
lation distributions of the correlations for all neurons between their rank 4
and quadrant-separable estimates: awake (black), and anesthetized (gray). The
correlations become worse for both populations, despite the fact that generic
quadrant-separable STRFs are of rank 4, providing more evidence that the
quadrant-separable STRFs are of rank 2, implying temporal symmetry. (Center)
The populations of permuted STRFs: the rank 2 estimate of each STRF is corre-
lated with the quadrant-separable estimate of every other STRF: awake (dark
gray hash) and anesthetized (light gray hash). The population is scaled by the
ratio of the number of STRFs to the number of permuted STRF pairs.

truncation of every other STRF for every rank 2 truncation. This distribu-
tion is broadly peaked around 0 (with the population scale normalized to
be the same as in Figure 9a). This demonstrates that the skewness of the
population toward unity in Figure 9a is not due to potentially confounding
factors, such as the STRFs’ dominant power in the first ∼100 ms, or having
rank 2, or being quadrant separable.

Thus, the results shown in Figures 8 and 9 provide evidence that all of
these rank 2 neurons are indeed temporally symmetric. However, temporal
symmetry is highly restrictive. There are many ways to obtain a rank 2 STRF
and only a very small subset is temporally symmetric, yet almost all of AI
rank 2 STRFs are. This finding must be a consequence of a fundamental
anatomical and physiological constraint on the way AI units are driven by
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the spectrotemporally dynamic stimuli. In the remainder of this article, we
demonstrate the simplest possible explanations that can give rise to these
observed temporal symmetry properties.

3.2 Implications and Interpretation of Temporal Symmetry for Neural
Connectivity and Thalamic Inputs to AI. Neurons in AI receive thalamic
inputs from ventral MGB, via layers III and IV (see Read, Winer, & Schreiner,
2002, for a recent review; Smith & Populin, 2001). In this section, we analyze
the effects of the constraints of temporal symmetry on the temporal and
spectral components of the thalamic inputs to an AI neuron. We are not
analyzing the cells with fully separable STRFs directly, but it will be shown
below that their analysis proceeds almost identically. Note again that the
linear equations used in this analysis do not assume that all processing
of inputs is linear; rather, they assume that the linear component of the
processing is strong and robust, in addition to all nonlinear components of
the processing.

The analysis below shows that there are physiologically reasonable mod-
els consistent with temporally symmetric neurons in and throughout AI.
The models presented here require two features: that the STRFs of the thala-
mic inputs be fully separable and that some of the thalamic inputs be lagged
(phase shifted), whether at the output of the thalamic neurons themselves
or at their synapses onto AI neurons. Ventral MGB neurons possess STRFs
consistent with being fully separable (Miller et al., 2002; Miller, Escabi, &
Schreiner, 2001; L. Miller, personal communication, October 1999), but there
has been no systematic study. Lagged neurons have not been reported in
ventral MGB, though they exist in visual thalamus (Saul & Humphrey,
1990), and other lagging mechanisms that may be present in the auditory
system are discussed below.

Alternatively, is very difficult to construct physiologically reasonable
models consistent with temporal symmetry neurons in AI without these
two features. We know of no such models, and we were not able to construct
any. From this, we are forced to predict that these two features will be found.
Independently of whether this occurs, however, some explanation is still
needed for the temporal symmetry displayed strongly in AI, and in this
section, we provide a reasonable basis.

3.2.1 Simplistic Model of Thalamic Inputs. The last line of equation 2.18,

hT S(t, x) = f A(t)gA(x) + f̂ A(t)gB(x), (3.2)

explicitly demonstrates that the temporally symmetric STRF is rank 2. A
simplistic interpretation of equation 3.2 is that a cell with a temporally
symmetric STRF has two fully separable inputs, for example, two cells
in ventral MGB. Each of those two input cells has the same temporal
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Figure 10: Schematics depicting simple models represented by equations 3.2 to
3.11. (a) Summing the inputs of two fully symmetric (FS) cells whose temporal
functions are in quadrature (θ = 0, θ = π/2) results in a temporally symmetric
(TS) cell (see equation 3.2). (b) Summing the inputs of two fully symmetric
(FS) cells whose temporal functions are in partial quadrature (θ = 0, θ 	= 0) still
results in a temporally symmetric (TS) cell (see equation 3.3). c. Summing the
inputs of many fully symmetric (FS) cells whose temporal functions are in partial
quadrature still results in a temporally symmetric (TS) cell (see equation 3.6).
(d) Summing the inputs of many fully symmetric (FS) cells whose temporal
functions are in partial quadrature, with differing impulse responses (at high
frequencies), input into a neuron whose somatic impulse response is slow,
results in a temporally symmetric (TS) cell (see equation 3.12): (Inset) A spectral
schematic of the low-pass nature of the slow somatic impulse response: K A( f )
is the Fourier transform of kA(t).

processing behavior except that one, whose temporal processing is char-
acterized by f̂ A(t), is the Hilbert transform of (lagged with respect to) the
other, with temporal processing characterized by f A(t). Mathematically, f̂ (t)
is in quadrature with f (t). The two inputs may have different spectral dis-
tribution of their own inputs or different synaptic weights as inputs to the
cortical cell: gA(x) 	= gB(x). This is shown schematically in Figure 10a. (It is
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also consistent with this model that gA(x) could equal gB(x), but such a case
reduces to the simple instance of a fully separable STRF.)

This interpretation is mathematically concise and explicitly demon-
strates that the temporally symmetric STRF is rank 2. This is the maximally
reduced form, and one may proceed to expand the form to demonstrate
other forms that its inputs are permitted to take, for example, allowing
many inputs from thalamic or even intracortical connections. The goal of
this section is to relax the strict decomposition implied by equation 3.2 (and
imposed arbitrarily by SVD) and to rewrite it in a form that allows for
physiologically reasonable inputs and physiologically reasonable somatic
processing, and to analyze the restrictions that are imposed on those inputs.
The more realistic decompositions below will allow us to reasonably model
the thalamic inputs and the somatic processing by identifying them with
terms in the decomposition, in a substantially more realistic interpretation
than those simple interpretations presented above. The more realistic de-
compositions have an additional role as well: they contrast with models
or decompositions that, appearing physiologically reasonable otherwise,
conflict with the data and so can now be ruled out.

3.2.2 Generalized Simplistic Model of Thalamic Inputs. First, the severity of
the full Hilbert transform can be relaxed. The model decomposition can use
a partial Hilbert transform f θ (t) (see equation 2.12) instead of the full Hilbert
transform. In equation 3.3, the first term of the decomposition has some
temporal impulse response f A(t) and an arbitrary spectral response field
gC (x). The second term has an impulse response f θ

A(t) that is some Hilbert
rotation of the first impulse response and an arbitrary spectral response
field gD(x),

hT S(t, x) = f A(t)gC (x) + f θ
A(t)gD(x), (3.3)

which is equivalent to the previous decomposition in equation 3.2:

h(t, x) = f A(t)gC (x) + f θ
A(t)gD(x)

= f A(t)gC (x) + (
sin θ f̂ A(t) + cos θ f A(t)

)
gD(x)

= f A(t) (gC (x) + cos θ gD(x))︸ ︷︷ ︸
gA(x)

+ f̂ A(t) sin θ gD(x)︸ ︷︷ ︸
gB (x)

= f A(t)gA(x) + f̂ A(t)gB(x)

= hTS (t, x), (3.4)

for any θ different from zero. This is physiologically more relevant since
a partial (θ < 90 degrees) Hilbert transform may be a simpler operation
for a neural process to perform than a full transform. The physiological
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interpretation of the first line of equation 3.4 is that the two temporal func-
tions of the independent input classes need not be related by a full Hilbert
transform (fully lagged cell); it is sufficient that one be a Hilbert rotation of
the other (partially lagged cell). This is shown schematically in Figure 10b.

It should be noted that exact Hilbert rotations for any θ 	= 0 are ruled out
by causality: it can be shown (e.g., Papoulis, 1987) that the Hilbert transform
of a causal filter is acausal. Therefore, we would never expect an exact
Hilbert transform (or exact temporal quadrature), only an approximate
Hilbert transform. This is exemplified in the visual system where the Hilbert
transform behavior of lagged cells is only a good approximation for the
frequency band 1 to 16 Hz (Saul & Humphrey, 1990). In the auditory system
we expect similar behavior: the (partial or full) Hilbert rotation will be
performed accurately only in the relevant frequency band.

To restate, AI models that attempt a decomposition of the form

h(t, x) = f A(t)gC (x) + fB(t)gD(x) (3.5)

where fB(t) 	= f θ
A(t) for some θ are ruled out. This is because they violate the

temporal symmetry property found in our STRFs. An example of a rank
2 STRF that is of the form of equation 3.5 but fB(t) 	= f θ

A(t) was shown
Figure 6a. It is not temporally symmetric and is therefore ruled out as a
model.

3.2.3 Multiple Input Model. Continuing to add more physiological re-
alism to the decomposition, we can allow for each of the two pathways
to be made of multiple inputs as long as their temporal structure is re-
lated, shown schematically in Figure 10c. In equation 3.6, the first sum in
the decomposition is made up of a number of individual input components
(m = 1, . . . , M) that all have the same temporal impulse response f A(t) but
may have individual spectral responses fields gCm (x). The second sum is
made up of a number of individual input components (n = 1, . . . , N) that
each may have different temporal impulse responses f θn

A (t), but all are given
by some individual Hilbert rotation (θn) of the initial impulse response and
individual spectral response fields gDn (x):

hTS (t, x) =
M∑

m=1

( f A(t)gCm (x)) +
N∑

n=1

(
f θn

A (t)gDn (x)
)
. (3.6)

This decomposition is leading toward one based on the many neural inputs
(i.e., N + M, which may be a very large number), each of which may have
different spectral response fields and different Hilbert rotations, but must
be related in their temporal structure. This is equivalent to the previous
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decomposition or to that in equation 3.2:

h(t, x) =
M∑

m=1

( f A(t)gCm (x)) +
N∑

n=1

(
f θn

A (t)gDn (x)
)

= f A(t)
M∑

m=1

(gCm (x)) + f A(t)
N∑

n=1

(cos θn gDn (x))

+ f̂ A(t)
N∑

n=1

(sin θn gDn (x))

= f A(t)
(∑M

m=1
gCm (x) +

∑N

n=1
(cos θn gDn (x))

)
︸ ︷︷ ︸

gA(x)

+ f̂ A(t)
∑N

n=1
(sin θn gDn (x))︸ ︷︷ ︸

gB (x)

= f A(t)gA(x) + f̂ A(t)gB(x)

= hTS (t, x) (3.7)

The physiological interpretation of equation 3.6 is that the cortical cell may
receive inputs from many thalamic inputs, not just two, and those many
cells need not be identical to each other. Nor do we require that the spectral
response fields be related in any way, though they may (they will likely have
similar best frequencies due to the tonotopic organization of the auditory
system, but they may be of different spectral response field shapes). The
inputs have been broken into two groups corresponding to the two terms of
equation 3.3. The first input group consists of M ordinary unlagged inputs.
The second input group consists of N lagged inputs. The phase lags may
all be the same, or they may be different.

To restate, we conclude that models that attempt a decomposition of the
form

hTS (t, x) =
M∑

m=1

( f A(t)gCm (x)) +
N∑

n=1

( fBn (t)gDn (x)) (3.8)

where fBn (t) 	= f θn
A (t) for some θn are ruled out. Such models implicitly

violate the temporal symmetry property.

3.2.4 Multiple Fast Input and Slow Output Model. There is another
physiologically motivated relaxation we can allow in our progressive
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decomposition to allow the thalamic temporal inputs to not be so carefully
matched, as long as the differences do not enter into the cortical computation
(e.g., at high frequencies). For instance, we note that the temporal process-
ing of the cell possessing this STRF is well characterized as the convolution
of its faster presomatic (multiple input) stage and its slower somatic (aggre-
gate processing) stage. We can thus separate the entire temporal component
of the cortical processing, f (t), which is a temporal impulse response, into
the convolution of impulse responses from a presomatic stage, k(t), and
somatic stage, kA(t):

f (t) = k(t) ∗ kA(t). (3.9)

The presomatic stage may contain high frequencies (e.g., the output of
thalamic ventral MGB neurons) that will not be passed though the slower
soma. In filter terminology, the somatic stage is a much lower-frequency
bandpass filter than the presomatic stage (the soma acts as an integrator,
which is a form of low-pass filtering). The convolution operation is used
since the filters (characterized by impulse responses) are in series. The
reason for making this separation is that we can allow each input component
fi (t) to be different as long as the difference is zero when passed through
the somatic component (Yeshurun, Wollberg, Dyn, & Allon, 1985),

(
ki (t) − k j (t)

) ∗ kA(t) = 0, for all i , j (3.10)

ki (t) ∗ kA(t) = k j (t) ∗ kA(t) = f A(t), for all i , j, (3.11)

and still obtain a temporally symmetric STRF. Physiologically, we are al-
lowing the thalamic inputs to have greatly differing temporal impulse re-
sponses, so long as all the differences appear in timescales significantly
faster than the somatic processing timescale (Creutzfeldt, Hellweg, &
Schreiner, 1980; Rouiller, de Ribaupierre, Toros-Morel, & de Ribaupierre,
1981):

hTS (t, x) =
(

M∑
m=1

(kAm (t)gCm (x)) +
N∑

n=1

(
kθn

An
(t)gDn (x)

))
∗ kA(t). (3.12)

Here the decomposition is broken up into a presomatic input stage and a
somatic processing stage, shown schematically in Figure 10d. The somatic
processing stage is the final convolution with the somatic (low-pass) tem-
poral impulse response kA(t). The input stage looks very similar to the
previous decomposition, except that now all the individual input compo-
nents may have temporal responses that are different from each other as
long as the differences are all for high frequencies (fast timescales), and they
remain identical for low frequencies (slow timescales). This is equivalent to
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the previous decomposition or to that in equation 3.2:

h(t, x) =
(

M∑
m=1

(kAm (t)gCm (x)) +
N∑

n=1

(
kθn

An
(t)gDn (x)

))
∗ kA(t)

=
M∑

m=1

((kAm (t) ∗ kA(t)) gCm (x)) +
N∑

n=1

((
kθn

An
(t) ∗ kA(t)

)
gDn (x)

)

=
M∑

m=1

( f A(t)gCm (x)) +
N∑

n=1

(
f θn

A (t)gDn (x)
)

= hTS (t, x). (3.13)

Note the Hilbert rotation of the input stage k(t) is conferred on the entire
temporal filter f (t), since

kθ (t) ∗ kS(t) = (
cos θ k(t) + sin θ k̂(t)

) ∗ kA(t)

= cos θ (k(t) ∗ kA(t)) + sin θ
(
k̂(t) ∗ kA(t)

)
= cos θ f A(t) + sin θ f̂ A(t)

= f θ
A(t), (3.14)

which uses the Hilbert transfer property

k̂1(t) ∗ k2(t) =H [k1(t)] ∗ k2(t)

=H [k1(t) ∗ k2(t)]

= k̂12(t), (3.15)

where k1(t) ∗ k2(t) = k12(t). That is, once lagging is performed in the thala-
mus, the effects of lagging continue up the pathway.

The physiological interpretation of equation 3.12 is that the thalamic in-
puts are quite unrestricted in their similarity. We do not require that all
thalamic inputs have the same temporal impulse response, plus Hilbert
rotations of that same temporal impulse response, as would be implied by
equation 3.6. We require that only the low-frequency components of the
thalamic impulse response be the same and that there be partial lagging in
some subset of the population. High-frequency components of the temporal
impulse responses and all aspects of the spectral response fields are com-
pletely unrestricted. In fact, high-frequency components of the temporal
impulse responses need not even be lagged, since they are filtered out.
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To restate, models that attempt a decomposition of the form

hTS (t, x) =
(

M∑
m=1

(kAm (t)gCm (x)) +
N∑

n=1

(
kθn

An
(t)gDn (x)

))
∗ kA(t) (3.16)

where ki (t) ∗ kA(t) 	= k j (t) ∗ kA(t) for all i , j are ruled out.
From the signal processing point of view, because all the thalamic inputs

ki (t) and k j (t), as impulse responses, are so fast compared to the slow so-
matic filter kA(t) they are convolved with, they are indistinguishable from a
pure impulse δ(t). More rigorously, in the frequency domain, the thalamic
input transfer functions (Fourier transform representations of the thalamic
input impulse responses) change only gradually over the typical range of
the somatic frequencies (a few tens of Hz). A transfer function with ap-
proximately constant amplitude and constant phase is approximately the
impulse function δ(t). That the thalamic inputs may also contain delays
does not change the result: a transfer function with approximately constant
amplitude and linear phase is approximately the delayed impulse func-
tion δ(t − t0). Even differential delays among inputs can be tolerated if the
differences are not too great, since a relative delay shift of 2 ms changes
phase by only 4% of a cycle over 20 Hz and less for slower frequencies. For
instance, differential delays of a few milliseconds that arise from different
thalamic inputs or from different dendritic branches of a cortical neuron are
too small to break the temporal symmetry.

Let us summarize the implications of temporal symmetry for thalamic
inputs to AI: the thalamic inputs are almost unrestricted, especially in their
spectral support, but they must have the same low-frequency temporal
structure (e.g., approximately constant amplitude and phase linearity for
a few tens of Hz). Any lagged inputs (significantly different from zero
but not necessarily near 90 degrees) will cause the cortical STRF to lose full
separability but maintain temporal symmetry. This is a prediction of the rea-
sonably simple but still physiologically plausible models presented above.
There are no constraints imposed by temporal symmetry on the spectral
response fields of the thalamic inputs (despite tonotopy in both ventral
MGB and AI), nor are there any constraints on the thalamic input impulse
response’s high-frequency (fast) components individually. The main as-
sumptions of the models are that the thalamic inputs are fully separable
and that the soma in AI includes a low-pass filter.

3.3 Implications and Interpretation of AI STRF Temporal Properties
for Neural Connectivity and Intracortical Inputs to AI. Neurons in AI
receive their predominant thalamic (ventral MGB) input in layers III and
IV (Smith & Populin, 2001). Other neurons in a given local circuit receive
primarily intracortical inputs, and neurons receiving thalamic inputs re-
ceive intracortical inputs as well. Temporal symmetry of the STRF places
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strong constraints on the nature of these intracortical inputs as well. Un-
like the thalamic inputs, that are assumed above to be fully separable, we
assume that the STRFs of cortical inputs are not fully separable but do
have temporal symmetry. In this section, we explore the constraints on
the temporal and spectral components of the intracortical inputs to an AI
neuron.

3.3.1 Adding Cortical Feedforward Connections. The first generalization
is that we allow the temporally symmetric AI neuron to project to another
AI neuron, which itself receives no other input, shown schematically in
Figure 11a. This second neuron is then also temporally symmetric, and its
STRF is given by the original STRF its input, convolved with the intrinsic
impulse response of the second neuron:

hTS (t, x) =
(

M∑
m=1

(kAm (t)gCm (x)) +
N∑

n=1

(
kθn

An
(t)gDn (x)

))
∗ kA(t) ∗ k2(t).

(3.17)

Before we show the next generalization that maintains temporal symmetry,
it is instructive to see a model generalization that does not maintain tem-
poral symmetry, and so is disallowed by the physiology. The sum of two
temporally symmetric STRFs is not, in general, temporally symmetric:

hTS
1 (t, x) = f A1(t)gA1(x) + f̂ A1(t)gB1(x)

hTS
2 (t, x) = f A2(t)gA2(x) + f̂ A2(t)gB2(x)

h(t, x) = hTS
1 (t, x) + hTS

2 (t, x)

= f A1(t)gA1(x) + f̂ A1(t)gB1(x) + f A2(t)gA2(x) + f̂ A2(t)gB2(x)

	= hTS (t, x), (3.18)

since it generically gives an STRF of rank 4, which cannot be temporally
symmetric since then it must be rank 2. There do exist configurations in
which there is a special relationship between the several spectral functions,
which does result in temporal symmetry, but they are highly restrictive: for
example, when gA1(x) = gA2(x) and gB1(x) = gB2(x). An example of an STRF
that is of the form of equation 3.18, where there is no special relationship
between the spectral and temporal components of its constituents, is shown
in Figure 6c. It is not temporally symmetric and is therefore ruled out as a
model.

3.3.2 Adding Cortical Feedback Connections. The next generalization is
at a higher level, in that it is the first generalization we consider that has
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Figure 11: Schematics depicting models that are more complex. (a) Using the
output of a temporally symmetric (TS) neuron as sole input to another neuron
results in a temporally symmetric (TS) neuron (see equation 3.17). (b) Feedback
from such a temporally symmetric neuron whose sole source is the first tem-
porally symmetric neuron is still self-consistently temporally symmetric (see
equation 3.19). (c) Multiple examples of feedback and feedforward: The initial
neuron TS 1 provides temporal symmetry to all other neurons in the network
due to its role as sole input for the network. All other neurons inherit the tempo-
ral symmetry, and the feedback is also self-consistently temporally symmetric.

feedback:

hTS
1 (t, x) =

(
M∑

m=1

(kAm (t)gCm (x)) +
N∑

n=1

(
kθn

An
(t)gDn (x)

))
∗ kA(t) + hTS

2 (t, x)

hTS
2 (t, x) = hTS

1 (t, x) ∗ k2(t). (3.19)
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This is an important generalization, shown schematically in Figure 11b. The
proof that the result is temporally symmetric is by causal induction: line
two of equation 3.19 guarantees that the STRF of neuron 2 is temporally
symmetric with the same spectral functions gA(x) and gB(x) of neuron 1.
Then since the result of line 1 is the sum of two temporally symmetric
STRFs sharing the same gA(x) and gB(x), the resulting STRF is also tem-
porally symmetric (and shares the same gA(x) and gB(x)). A more rigor-
ous proof follows straightforwardly when using the MTFST instead of the
STRF.

This illustrates the base of a large class of generalizations: Any network
of cortical neurons in one self-contained circuit, including feedforward and
feedback connections, will remain temporally symmetric as long as all spec-
tral information arises from a single source that receives all thalamic input.
That is, if input into the cortical neural circuit arises, ultimately, from a sin-
gle source receiving all thalamic input (e.g., one neuron in layer III/IV), then
all neurons in that circuit will be temporally symmetric and all will share
the same spectral functions gA(x) and gB(x). A substantially more complex
example is illustrated schematically in Figure 11c.

The converse to this rule of a single source of thalamic inputs to a cortical
circuit is that almost any other inputs will break temporal symmetry and
are therefore disallowed by the physiology. As shown in equation 3.18, any
neuron that receives input from two sources whose temporal symmetries
are incompatible will not be temporally symmetric and is therefore disal-
lowed. Essentially, each local circuit must get its input from a single layer
III/IV cell. This is a strong claim: it demands that neurons in the local circuit
but not in layer III/IV must also be temporally symmetric. Generally inputs
from neighboring or distant circuits will have a different spectral balance of
thalamic inputs and would break temporal symmetry if strongly coupled,
at least at timescales important to these STRFs (a few to a few tens of Hz).
Only if the neighboring cortical cell were to have a compatible temporal
symmetry would it be allowed to take part in the circuit without violating
temporal symmetry.

Fully separable cells in AI are also well explained by all the above models,
except without the second lagged thalamic population. All of the results,
generalizations, and restrictions apply equally strongly, since anything that
breaks temporal symmetry increases the rank and so does not allow the
STRF to be of rank 1 either; and maintaining temporal symmetry is consis-
tent with full separability if there are no lagged inputs to increase the STRF
rank from 1 to 2.

4 Discussion

Temporal symmetry is a property that STRFs may possess, but there is not
any mathematical reason that they must. Nevertheless, in the awake case,
85% of neurons measured in AI were temporally symmetric—ηt > 0.65,
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and 96% in the anesthetized population (including those that are fully
separable). This property merits serious attention.

Simple models of functional thalamic input to AI, where the temporal
functions are unconstrained or even if identical but with relative delays
of more than a few milliseconds, do not possess the property of temporal
symmetry, and so must be ruled out. On the other hand, it is quite possible
for a model to achieve temporal symmetry: the only restriction on thalamic
inputs is that their low-pass-filtered versions (at rates below 20 Hz, that
is, those commensurate with cortical integration time constants) must be
identical. Additionally, some of the ventral MGB inputs must be (at least
partially) lagged in order for the cortical neuron to be temporally symmetric
without being fully separable.

Additional constraints are forced on neurons in AI receiving input from
other neurons in AI, whether from simple feedforward or as part of a
complicated feedback-feedforward network. Simply taking two temporally
symmetric neurons as input will not generate a temporally symmetric neu-
ron. Since the temporal profiles of cortical neurons are not identical, the only
way to maintain temporal symmetry is to keep the same spectral balance
of the lagged and nonlagged components (gA(x) and gB(x) in equation 3.2).
The only sure way to accomplish this is to restrict all inputs to the local
circuit network to a single input neuron, for example, in layer III/IV.

Another possibility, not ruled out, is to carefully match the balance of
the lagged and nonlagged components even when coming from another
column. It seems this would be difficult to match well enough to avoid
breaking temporal symmetry, but it is not disallowed by this analysis. It
is consistent with the findings of Read et al. (2001), who note that hori-
zontal connections match not only in best frequency but also in spectral
bandwidth.

One can rule out the possibility that temporal symmetry is due to a simple
interaction between ordinary transmission delays and limited temporal
modulation bandwidths. For instance, if the STRF’s temporal bandwidth
is narrow, an ordinary time delay (with phase linear in frequency) might
appear to be constant phase lag. If this effect were important, the temporal
symmetry parameter should show a negative correlation with temporal
bandwidth. In fact, the correlation between temporal bandwidth (of the
first singular value temporal cross-section) and temporal symmetry index
is small and positive: 0.24 for the awake case and 0.21 for the anesthetized
case.

Of course, the experimental results of Figures 8 and 9 do not show ab-
solute temporal symmetry, only a large degree. Similarly, intracortical con-
nections from neighboring or distant circuits are not ruled out absolutely:
rather, their strength must be small and their effects more subtle. Indeed,
for neurons whose STRF is noisy, the “noise” may be due to inputs from
neighboring or distant circuits, whether thalamic or intracortical, that are
not time-locked.
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In addition, since all the STRFs in this analysis were derived en-
tirely from the steady-state portion of the response, this analysis and
its models do not apply to neural connections that are active only dur-
ing onset. This is a limitation of any study of steady-state response.
The neural connectivity it predicts is a functional connectivity—the
connectivity active during the steady state. Nevertheless, the steady-
state response is important in auditory processing (e.g., for background
sounds, auditory streaming), nor is it is likely that steady-state func-
tional connectivity is completely unrelated to other measures of functional
connectivity.

It should be noted that the possibility of thalamic inputs being not fully
separable but still temporally symmetric (still with all inputs having the
same temporal function) is not strictly ruled out mathematically. It amounts
to a rearranging of the terms within the largest parentheses of equation 3.12.
There is no physiological evidence against the existence of not fully sepa-
rable, temporally symmetric neurons, in auditory thalamus, with all inputs
having the same temporal function. In fact, it is possible to shift the models
presented here down one level, using input from fully separable neurons in
inferior colliculus (IC) instead of thalamus and using thalamocortical loops
instead of intracortical feedback. In this case, it would be necessary to find
a mechanism that lags (Hilbert rotates) some of the IC inputs. The essential
predictions are the same: all input to the circuit must be through a single
source, and any exceptions would break the temporal symmetry, but the
source has been moved down one level. However, it does add another layer
of complexity and of strong assumptions to the models, so this appears less
likely to be relevant.

If, however, ventral MGB neurons are found with substantially more
complicated STRF structures (e.g., quadrant separable but not temporally
symmetric, or even inseparable without any symmetries, both of which
are more complicated than all of the AI neurons described here), then the
models proposed here would not be able to accommodate them, and another
explanation will have to be found for the temporal symmetry found in AI.

The specific models proposed by the equations above (e.g., equations
3.3, 3.6, 3.12, 3.17, 3.19) are somewhat more general than the precise de-
scriptive text that follows from them. For instance, lagged cortical cells are
allowed in place of the lagged thalamic cells: for example, in the macaque
visual system, there are both lagged and nonlagged V1 cortical neurons,
in addition to the same two populations in visual thalamus (De Valois
et al., 2000). The models above do not distinguish between those corti-
cal inputs and those thalamic inputs. Similarly, the models do not depend
on the mechanism by which input neurons are lagged, whether by thala-
mic inhibition (Mastronarde, 1987a, 1987b) or synaptic depression (Chance
et al., 1998); from equation 3.3, the models do not even depend on the sign
or magnitude of the phase lag. Nevertheless, this does not invalidate the
models’ ease of falsifiability.
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The example of a feedback network described by equation 3.19 and de-
picted in Figure 11b is the simplest of systems that include feedback. The
more complex model depicted in Figure 11c serves as an example of a more
complex cortical network with feedback, but the class of feedback systems
is so much larger than of feedforward systems that it is beyond the scope
of this article to categorize all of them.

One important feature of these models is their ease of falsifiability. Most
interactions will break temporal symmetry. Any functionally connected
pair of neurons in AI with temporally symmetric STRFs, but with incom-
patible impulse responses and spectral response fields, would invalidate
the model. Finding direct evidence is also possible, and we propose one
experiment as an example: simultaneous recording from two functionally
connected neurons in AI with strong temporally symmetric STRFs. While
presenting steady-state auditory stimuli, electrically stimulate the neuron
whose output is the other’s input in a way that is incompatible with tempo-
ral symmetry but compatible with the steady-state stimulus. If these models
are correct, the STRF of the other neuron will remain well formed but lose
temporally symmetry.

Additional caveats are in order, delineating the types of functional con-
nections permitted and disallowed by the measured temporal symmetry.
The STRF captures many features of the response in AI, but not all. For
instance, typical STRFs in AI only go up to a few tens of Hz (Depireux
et al., 2001) since the neurons cannot lock to rates higher than that, yet
some spikes within the response show remarkably high temporal precision
across different presentations—as fast as a millisecond (see, e.g., Elhilali,
Fritz, Klein, Simon, & Shamma, 2004). Since STRFs do not capture effects at
this timescale, predictions made from the temporal symmetry of the STRFs
cannot place any constraints on functional connections that take effect only
at this timescale. Similarly, since the STRFs are measured only from the
sustained response and do not use the onset response, constraints cannot
be placed on functional connections that occur only in the first few hundred
milliseconds.

These results have been obtained from STRFs measured by a single
method (using TORC stimuli) and still need to be verified for STRFs mea-
sured using different stimuli. Use of the SVD truncation (see equation 2.20)
and calculation of the temporal symmetry index (see equation 2.21) is
straightforward for STRFs from any source. The main caveat in applying
this technique to other data is that the STRFs should be sufficiently error
free, especially in systematic error (Klein et al., 2006). Too much error in
the STRF estimate leads to the second term in the singular value truncation
being dominated by noise, which corrupts the estimate of the temporal
symmetry index.

How much of this work generalizes beyond AI? In vision, it appears
that temporal and spectral symmetry measurements for spatiotemporal re-
sponse fields are rarely, if ever, made (these measurements would require
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the entire spatiotemporal response field to be measured, not just the tem-
poral response at the best spatial frequency, or the converse). It is certainly
true that many spatiotemporal response fields show strong directional se-
lectivity, and it is clear from equation 2.31 that an STRF, which is quadrant
separable and purely directional selective, is also temporally symmetric.

The population distributions of the temporal symmetry index, shown
in Figure 8a, exhibit some differences between the awake and anesthetized
populations, the most pronounced of which is the low-symmetry tail in the
awake population. The similarities are more profound than the differences,
however: the large majority of STRFs show pronounced temporal sym-
metry. This is especially striking when compared with the spectral case,
shown in Figure 8b, which has broad distribution in both the awake and
anesthetized populations.

Let us also restate an earlier point regarding the validity of drawing
conclusions from a linear systems analysis of a system known to have
strong nonlinearities. Linear systems are a subcategory of those nonlinear
systems well described by Volterra and Wiener expansions (Eggermont,
1993; Rugh, 1981). If, in particular, the system is well described by a linear
kernel followed by a static nonlinearity, the measured STRF is still pro-
portional to that linear kernel (Bussgang, 1952; Nykamp & Ringach, 2002),
since the stimuli used here, though discretized in rate and spectral den-
sity, are approximately spherical. If the system’s nonlinearities are more
general or the static nonlinearity is sensitive to the residual nonsphericity
of the stimuli, then the measured STRF will contain additional stimulus-
dependent, nonlinear contributions. Crucially, it has been shown that those
potential higher-order nonlinearities are not dominant (i.e., the linear prop-
erties are robust) in ferret AI, since using several stimulus sets with widely
differing spectrotemporal properties produces measured STRFs that do
not differ substantially from each other (Klein et al., 2006). This implies
that the STRF measured here is dominantly proportional to a linear ker-
nel (followed by some static nonlinearity) and that the analysis performed
here is valid. To the extent that there is higher-order contamination in the
STRF, however, the analysis is affected in unknown ways. For example,
there are related neural systems for which the dominant response has not
been seen to be linear (Machens, Wehr, & Zador, 2004; Sahani & Linden,
2003).

The most immediate other question is whether ventral MGB neurons
have fully separable STRFs and whether any have lagged outputs. If nei-
ther of these holds true, then it becomes very difficult to explain temporal
symmetry, which is so easily broken. Another set of questions revolves
around the generation of STRFs themselves. What distinguishes AI neu-
rons that have clean STRFs from those that have noisy STRFs, or none at
all? Only some (large) fraction of AI neurons have recognizable STRFs,
and only some (large) fraction of those recognizable STRFs have a high
signal-to-noise ratio (no specific statistics have been gathered, and a careful
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analysis is beyond the scope of this article). What is the cause of this noise,
and how is it related to (presumably) non-phase-locked inputs?

Appendix

A.1 Temporal Symmetry Ambiguities. There are ambiguities and
symmetries in the decomposition in equation 3.2: hTS (t, x) = f A(t)gA(x) +
f̂ A(t)gB(x). The transformation parameterized by an amplitude and phase
(λ, θ ),

f A(t) → λ f θ
A(t) = λ(cos θ f A(t) + sin θ f̂ A(t))

f̂ A(t) = f π/2
A (t) → λ f θ+π/2

A (t) = λ(− sin θ f A(t) + cos θ f̂ A(t))

gA(x) → λ−1 (cos θ gA(x) + sin θ gB(x))

gB(x) → λ−1 (− sin θ gA(x) + cos θ gB(x)), (A.1)

leaves equation 3.2 invariant. This indicates a twofold symmetry, which
here means that this decomposition is ambiguous (nonunique). The am-
plitude symmetry, parameterized by λ, demonstrates that the power
(strength) of an STRF cannot be ascribed to either the spectral or
the temporal cross-section. A standard method of removing this am-
biguity is to normalize the cross-sections and include an explicit
amplitude,

hTS (t, x) = �AvA(t)uA(x) + �B v̂A(t)uB(x), (A.2)

where the ui and vi are of unit norm. This method is used in SVD.
The rotation transformation parameter θ merely establishes which of the

possible rotations of f θ
A (t) we choose to compare against all others. For

example, in Figure 7, the temporal cross-section at the best frequency (i.e.,
the frequency at which the STRF reaches its most extreme value) is chosen
to be the standard impulse response against which all others are compared.
To do this, we choose θ such that hTS (t, xB F ) = f A(t)gA(xB F ) and λ such
that gA(xB F ) = 1.

A.2 Quadrant-Separable Spectrotemporal Modulation Transfer
Functions. For mathematical convenience, we name and define the cross-
sectional functions referred to without names above in section 2.9. In quad-
rant 1, where both w and � are positive, H(w,�) = F +

1 (w)G+
1 (�), where the

index 1 refers to quadrant 1 and the + indicates that the function is defined
only for positive argument. In quadrant 2, where w is negative and � is
positive, H(w,�) = F +∗

2 (−w)G+
2 (�), where the index 2 refers to quadrant

2, the + indicates that the function is defined only for positive argument, –w
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is positive, and the complex conjugation makes later equations significantly
simpler. Thus, a quadrant-separable MTFST can be expressed as (valid in all
4 quadrants)

HQS(w,�) = F +
1 (w)	(w)G+

1 (�)	(�)

+ F +
2 (w)	(w)G+∗

2 (−�)	(−�)

+ F +∗
1 (−w)	(−w)G+∗

1 (−�)	(−�)

+ F +∗
2 (−w)	(−w)G+∗

2 (�)	(�), (A.3)

where 	() is the step function (1 for positive argument and 0 for negative
argument). In equation A.3 it is explicit that the spectrotemporal modula-
tion transfer function in quadrants 3 (w < 0,� < 0) and 4 (w > 0,� < 0) is
complex conjugate to quadrants 1 and 2, respectively.

This can be written more compactly as

HQS(w,�) = F1(w)G1(�) + F2(w)G2(�) − F̂1(w)Ĝ1(�) + F̂2(w)Ĝ2(�),

(A.4)

where

Fi (w) = F +
i (w)	(w) + F +∗

i (−w)	(−w)

Gi (�) = G+
i (�)	(�) + G+∗

i (−�)	(−�) (A.5)

are defined for both positive and negative argument (and are complex
conjugate symmetric by construction), i = (1, 2), and the Hilbert transform
is defined in transfer function space as

F̂ (w) = j sgn(w) F (w)

Ĝ(�) = j sgn(�) F (�). (A.6)

Equation A.4 demonstrates that a quadrant-separable spectrotemporal
modulation transfer function can be decomposed into the sum of four fully
separable spectrotemporal modulation transfer functions where the last two
terms are fully determined by the first two and the requirement of quadrant-
separability. This is the first time we see that a generic quadrant-separable
MTFST (and its STRF) is rank 4, and not 2. Roughly speaking, it comes from
the combination of two independent product terms in quadrants 1 and 2,
plus the restriction that the MTFST must be complex conjugate symmetric.

An equivalent decomposition equally concise, but more amenable to
comparison with definitions motivated earlier, of a quadrant-separable
spectrotemporal modulation transfer function into the sum of four fully
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separable spectrotemporal modulation transfer functions is

HQS(w,�) = FA(w)G A(�) + F̂ B(w)Ĝ B(�) + F̂ A(w)G B(�) + FB(w)Ĝ A(�),

(A.7)

where

FA(w) = 1√
2

(F1(w) + F2(w))

FB(w) = 1√
2
(−F̂ 1(w) + F̂ 2(w))

G A(�) = 1√
2
(G1(�) + G2(�))

G B(�) = 1√
2
(−Ĝ1(�) + Ĝ2(�)). (A.8)

Taking the inverse Fourier transform gives the canonical form of the
quadrant-separable STRF

hQS(t, x) = f A(t)gA(x) + f̂ B(t)ĝB(x) + f̂ A(t)gB(x) + fB(t)ĝA(x), (A.9)

which is also equation 2.28.

A.3 Quadrant Separability Ambiguities. There are ambiguities and
symmetries in the decomposition in equation A.3 (and, correspondingly,
equations A.4 and A.7). The transformation parameterized by a pair of
amplitudes and phases (�1, θ1,�2, θ2)

F +
1 → F +

1 �1 exp ( jθ1)

G+
1 → G+

1 �−1
1 exp (− jθ1)

F +
2 → F +

2 �2 exp ( jθ2)

G+
2 → G+

2 �−1
2 exp (− jθ2) (A.10)

or, equivalently,

F1(w) → �1 F θ1
1 (w)

G1(�) → �−1
1 G−θ1

1 (�)

F2(w) → �2 F θ2
2 (w)

G2(�) → �−1
2 G−θ2

2 (�), (A.11)
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leaves equation A.3 invariant, representing an ambiguous/nonunique de-
composition. The spectrotemporal version of the transformation is

f1(t) → �1 f θ1
1 (t)

g1(x) → �−1
1 g−θ1

1 (x)

f2(t) → �2 f θ2
2 (t)

g2(x) → �−1
2 g−θ2

2 (x). (A.12)

The amplitude symmetry, parameterized by �1 and �2, demonstrates that
the amplitude (or power) in one quadrant of a spectrotemporal modulation
transfer function cannot be ascribed to either the spectral or the temporal
cross-section. Again, a standard method of removing this ambiguity is to
normalize the cross-sections and include an explicit amplitude:

HQS
ST (w,�) = V1(w)�1U1(�) + V2(w)�2U2(�)

− V̂1(w)�1Û1(�) + V̂2(w)�2Û2(�), (A.13)

where the Ui and Vi are of unit norm. This method is used in singular value
decomposition (SVD). The spectrotemporal version is

hQS(t, x) = v1(t)�1u1(x) + v2(t)�2u2(x)

− v̂1(t)�1û1(x) + v̂2(t)�2û2(x). (A.14)

The phase ambiguity, parameterized by θ1 and θ2, can be useful. By judi-
cious choice of this transformation, it can always be arranged that F2 be
orthogonal to F̂ 1 and G2 be orthogonal to Ĝ1 simultaneously. This is useful
when performing detailed calculations (e.g., the analytic expression below
for the singular values of a quadrant separable spectrotemporal modula-
tion transfer function) because it explicitly decomposes the spectrotemporal
modulation transfer function, viewed as a linear operator, into components
that act on orthogonal subspaces.

A.4 Rank of Quadrant-Separable Spectrotemporal Response Fields.
This section uses SVD to prove that the rank of a generic quadrant-separable
STRF is 4.

We begin with equation A.14. In this form, the symmetry generated
by �1 and �2 in equation A.11 has already been fixed, but we can
still use the symmetry generated by θ1 and θ2 in equation A.11 to sim-
plify later calculations. We quantify the nonorthogonality of the terms in
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equation A.14 by the four angles,

cos θV = v1 · v2 = v̂1 · v̂2

cos θU = u1 · u2 = û1 · û2

cos ϕV = v1 · v̂2 = −v̂1 · v2

cos ϕU = u1 · û2 = −û1 · u2, (A.15)

where wi · w j := ∫
wiw j , and vi · v j = v̂i · v̂ j = δij = ui · u j = ûi · û j . By

making an explicit transformation with θ1 and θ2 from equation A.12 such
that

tan(θ1 − θ2) = −cos ϕV

cos θV

tan(θ1 + θ2) = cos ϕU

cos θU
, (A.16)

then it can be shown that after the transformation,

v1 · v̂2 = 0 = u1 · û2, (A.17)

and there are new values for cos θV = v1 · v2 and cos θU = u1 · u2 as well.
This step is not necessary but it reduces the complexity of the following
equations. To avoid double counting, we also need to restrict the range of
either θU or θV (just as on a sphere, we let the azimuthal angle run over the
entire equator but enforce the polar angle to run over only half a great circle
of longitude). We do this by enforcing that cos θU be positive.

We then apply SVD to equation A.14 with the constraint of equation A.17.
The singular values λ1, λ2, λ3, and λ4 are the eigenvalues of the operator
formed by taking the inner product of the STRF with itself along the w axis:

∫
dt hQS(t, x) hQS†(t, x′) = �2

1u1(x)u1(x′) + �2
2u2(x)u2(x′)

+�1�2 cos θV
(
u1(x)u2(x′) + u2(x)u1(x′)

)
+�2

1û1(x)û1(x′) + �2
2û2(x)û2(x′)

−�1�2 cos θV
(
û1(x)û2(x′) + û2(x)û1(x′)

)
.

(A.18)

Each pair of lines of the right-hand side of equation A.18 can then
be orthogonalized separately. In fact, after we orthogonalize the first
two lines, the second last two lines can be orthogonalized by substi-
tuting cos θV → − cos θV and taking the Hilbert transform of each com-
ponent function. To orthogonalize the first two lines, we look for the
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eigenvalues λ2 and coefficients c1 and c2 such that

ζ (x) = c1u1(x) + c2u2(x) (A.19)

is the eigenfunction solving the eigenvalue equation,

∫
dx′ (�2

1u1(x)u1(x′) + �2
2u2(x)u2(x′)

+�1�2 cos θV
(
u1(x)u2(x′) + u2(x)u1(x′)

))
ζ (x′)

= λ2ζ (x). (A.20)

Putting equation A.19 into equation A.20 and expanding gives a pair of
solutions defined (up to normalization) by the two roots of the quadratic
equation

(
c2

c1

)2 (
�2

1 cos θU + �1�2 cos θV
)

+
(

c2

c1

) (
�2

1 − �2
2

) − (
�2

2 cos θU + �1�2 cos θV
)
, (A.21)

and the corresponding two solutions of

λ2 = �2
1 + �1�2 cos θV cos θU +

(
c2

c1

) (
�2

1 cos θU + �1�2 cos θV
)
. (A.22)

Solving similarly for the eigenfunctions and eigenvalues of the second last
two lines of the right-hand side of equation A.18 gives the same as equations
A.21 and A.22 but with cos θV → − cos θV .

The eigenfunctions of w are given by using the operator formed by taking
the inner product of the STRF with itself along the � axis,

∫
dx hQS(t, x) hQS†(t′, x), (A.23)

and give the same eigenvalues.
Explicitly, the four eigenvalues λ2 are given by the four solutions of

λ2 = �2
1+�2

2
2 + �1�2 cos θV cos θU

±
√(

�2
1+�2

2
2

)2
− �2

1�
2
2 (1 − cos2 θV − cos2 θU ) + (

�2
1 + �2

2

)
�1�2 cos θV cos θU .

(A.24)
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and the same with cos θV → − cos θV . The four singular values are given by
the four positive square roots of λ2. Because the system is explicitly orthog-
onal, the rank is given by the number of nonzero values of λ2. Generically,
the four values of λ2 are nonzero, with the only exceptions described below.

A.5 Lower-Rank Quadrant-Separable Spectrotemporal Response
Fields. This section uses SVD to prove that if a quadrant-separable STRF
has rank less than the generic rank of 4, then this is caused by specific
symmetries, and the rank must be reduced to 2 (or 1).

Label the four eigenvalues λ2 as λ2
A± for the two solutions to equa-

tion A.24 and λ2
B± for the two solutions to equation A.24 but with cos θV →

− cos θV .
First, we consider the case that neither �1 nor �2 vanishes (we will

consider the alternative case later). Define �0 = √
�1�2 and

α2 = 1
2

(
�2

1

�2
2

+ �2
2

�2
1

)
, (A.25)

where it can be shown that α2 > 1 for any �1 and �2. Then the SVD eigen-
values can be written as

λ2 = �2
0

(
α2 + cos θV cos θU

±
√(

α2 + cos θV cos θU
)2 − (1 + cos θV cos θU )2 + (cos θV + cos θU )2

)
,

(A.26)

and the same with cos θV → − cos θV . Note for reference below that since
α2 > 1, the top row expression of equation A.26 is nonnegative, as is the
expression under the square root. It can also be shown that the top row ex-
pression is greater than or equal to the square root expression, guaranteeing
that all of λ2

A± and λ2
B± are nonnegative.

The loss of rank (from 4 to a smaller number) corresponds to at least
one of the eigenvalues vanishing, since the rank is the number of nonzero
eigenvalues. Because of the nonnegativity properties of the components of
equation A.26, we always have λ2

A+ > λ2
A− and λ2

B+ > λ2
B−, and so if only

one of the eigenvalues vanishes, it must be λ2
A− or λ2

B−. First, consider
the case of λ2

A− = 0. This can occur only when the top row expression of
equation A.26 cancels the square root expression exactly or, since they are
both nonnegative, when their squares cancel exactly. This condition, when
simplified, can be written as(

1 − cos2 θV
) (

1 − cos2 θU
) = 0 (A.27)

which can occur only when cos2 θV = 1 or cos2 θU = 1.
The case cos2 θV = 1 results in only two nonzero eigenvalues, with values

λ2 = 2�2
0

(
α2 ± cos θU

)
, and 2 zero eigenvalues, λ2

A− = λ2
B− = 0, giving an
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STRF of rank 2 (not rank 3, the guess associated with the initial assumption
of λ2

A− = 0). From equation A.15, this also results in v2(t) = ±v1(t), which
is necessary and sufficient for temporal symmetry: the STRF has only one
temporal function and its Hilbert transform.

Analogously, the case cos2 θU = 1 results in spectral symmetry. There are
only two nonzero eigenvalues, with values λ2 = 2�2

0

(
α2 ± cos θV

)
, and two

zero eigenvalues, λ2
A− = λ2

B− = 0, giving an STRF of rank 2.
Considering the case of λ2

B− = 0 leads to the identical conclusions.
Aside from the degenerate case, in which only one nonzero eigenvalue

remains (which is the fully separable case), the only other possibility of low
rank arises from when either �1 or �2 vanishes. If �1 = 0, then the quadrant-
separable STRF of equation A.14 is explicitly in the form of equation 2.31,
giving this STRF the symmetry of pure directional selectivity. Equation A.24
simplifies dramatically and results in only two non-zero eigenvalues (both
with value �2

1), giving a rank 2 STRF. Similarly, if �2 = 0, the STRF is
purely directionally selective in the opposite direction, resulting in only
two nonzero eigenvalues (with value �2

2), and also rank 2.
Thus, we have proven that whenever the rank of a quadrant separable

STRF is less than 4, it must be rank 2 and temporally symmetric; rank 2 and
spectrally symmetric; rank 2 and directionally selective; or rank 1 and fully
separable.
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