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Notes on Conventions 

In this paper I will be using the conventions used by Misner, Thorne. and 

Wheeler's Grayjtatioo. They are as fol lows: 

gJJ., has signature (-+++) 

RJJ Voe~ = rJJ v~.oc -rJ.I lloe,J + f Jl O'oc fO' v~ -fJ.1 O'~ RO' Voe 

Rpv = Rocµocv 

Gµv = Rpv - 1I29µ.,A = KT µv 

F µv = Av,.µ - Aµ. v 

The other important convention of which the reader should be aware 

concerns subscript labeling. As usual, Greek indices (0<,~,Jl,V,etc.) run 

from o to 3. Latin indices (a.b,c,i,j, etc.), however, run from O to 2, not 

from I to 3. 

Of course the speed of light is set to unity (c= 1), and the Einstein 

summation convention is in use. even with Latin indices. 



Pre race 

This thesis was inspired by and is based upon work done by my advisor, 

Professor Richard Gott, and his former student, Mark Alpert. Their paper 

was the first of three papers, all published within several months of each 

other, and al I independently announcing the same result: General Relativity 

in 4 dimensions, 1 less dimension than ours, is not trivial. The goal of 

this thesis is to explore one facet of this 3 dimensional universe (first 

named "Flatland" by the Victorian novelist Edwin Abbot) --the workings of 

electromagnet ism. 

The first example presented is the case of an electromagnetic wave. 

In the case of 3 dimensions, the Kaluza-Klein formalism proves to be an 

especially alluring tool to study this example with. The goal of a 

Kaluza-Klein theory is to unify gravitational interactions with other 

interactions using General Relativity and additional microscopic 

dimensions. Unfortunately, the addition of extra dimensions makes the 

theory harder to visualize. "In what direction does the extra dimension 

point?" the layman might ask. Adding an extra dimension to Flatland, 

however, makes the new universe very similar to ours. thereby making the 

Physics even easier to understand. For instance, there are no 

gravitational waves in 3 dimensions (see Chapter 1), but there should be 

in 4 dimensions. By replacing electromagnetism with an extra dimension, 
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an electromagnetic wave should be replaced by a gravitational wave. 

The second case this thesis explores is that of an electrostatic charge. 

It turns out that this case is not as easily understood or solved using the 

Kaluza-Klein formalism (which is, unfortunately, at cross purposes with 

my original intentions). The case does, however, prove a very interesting 

cosmology for Flatland, which will be discussed in Chapter 5. 

Special and much deserved thanks go to my advisor. Professor Richard 

Gott, for the tremendous amount of time and the wealth of ideas he has 

given me. Without his generous help this thesis would have been nothing. 
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Chapter 1 

THE PHYSICS OF FLATLAND 

On the surface, General Relativity would seem to have the same 

properties in 3 dimensions as in 4 dimensions. We still use a metric 9mn 

(equivalent to 9µ .. ). equal to the upper lefthand 3x3 submatrix of 9µ1-1· and 

from 9mn are derived the connection coefficients rmab {equivalent to fJ.lcc~· 

the Riemann curvature tensor, Rab~ (equivalent to Roc~~6). and so on for all 

the other important quantities used in 4 dimensions. The most important 

equation of Einstein's General Relativity also still holds: 

Gmn=<Rm0- 1 129m~)=KTmn- In 4 dimensions, the constant xis determined by 

the necessity that Einstein's equations reduce to Newton's equations in 

the non-relativistic limit, which forces x=81CG (G is Newton's 

Gravitational Constant). ln 3 dimensions, as shall be shown, there is no 

Newtonian I im it, and so x remains an arbitrary constant. We note that in 

geometrized units, where x is dimensionless (and c = 1 ), that Gµv has 

units of curvature or (lengtht2, and T J1v has units of mass density or 

(mass)(lengtht2, which makes mass dimensionless as wet I. 

The most important difference between the two cases is the different 

numbers of components in a tensor of a given rank. The number of 
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components of a tensor comes from the dimension of the space raised to 

the power of the order of the tensor. The number of actually independent 

components of the tensor is determined by various symmetries of the 

tensor. Thus, while a vector changes from 4 components to 3 components, 

a tensor of rank 4 changes from 256 components to a mere 81 components. 

The tensor gJw• with 1 o independent components (the metric must be 

symmetric), becomes 9mn with only 6 independent components. Rµ~ also 

goes from 1 O to 6 components when it changes to Rmn· The tensor Rcx~t& 

with 20 independent components (due to various symmetries and 

antisymmetries). becomes Rabcd with a mere 6 independent components. 

The fact that Rmn and Rabcd have the same number of independent 

components makes it very plausible that Rabcc! could be given from Rmn 

alone. This is indeed true, as shown in the formula: 

Rabcd = 9a~bd - gactAbc - 9~ad + 9b~ac - 1
/ 2(9ac 9bd -gad 9bc) gmn Rmrr 

This becomes especially important in the absence of mass, where T mn=O. 

From Einstein's equation Rm0=0 also, and therefore Rabe<l=O as well. This 

procludes any curvature at all in the absence of matter, whether in the 

form of gravitational waves or attraction at a distance. This is obviously 

different from the 4 dimensional case, where the Schwarzchild solution 

generates curvature outside the radius of a massive body. This required 

flatness of space-time in the absence of mass would seem to make the 

physics of gravity in 3 dimensions almost trivial. 

It has been shown, however, by Gott and Alpert 1 (and independently 

by others2) that, although the presence of mass cannot induce curvature 

per seat a distance, it does affect the space around the mass by reducing 

the total amount of angle of the space by an amount proportional to the 
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mass (from 21T to 21T-KM). This makes the space technically flat, but 

conical in form. Gott and Alpert give the metric around a point mass as: 

ds2 = -dt2 • ( 21T ) 2 dr2 • r2d4>2. 
21'C-KM 

This metric is analogous to the Schwarzchild metric around a point mass 

in 4 dimensions. The Gott-Alpert metric, however. does not lead to a 

black note, and it can easily De seen that this metric corresponds to flat 

space-time Dy the simple transformations: 

r· - ( 21f ) r 
21T-xM 

4>' = ( zrriNMJ <P 

This gives the obviously flat metric: 

ds2 = -dt2 • dr'2 + r2d<j>'2. 

we must be careful to notice that the limits of cp· are now different from 

the limits of cp: o ~ f{J' ~ 2n-xM rather than o < <P ~ 21T. There is an angle 

deficit of xM induced by the presence of mass. This nas the effect of 

causing initially parallel rays to converge as they pass on different sides 

of the particle, even though there is no curvature or attraction. This type 

of singularity is called quasi-regular, having the property that as r-+O 

the Riemam curvature is bounC1ee1. Dul the circumference is not eQual to 

2Trr. 

Another solution that Gott anel Alpert give for Einstein's equation in 3 

dimensions is a static. C1ust-fillee1 universe of rae11us r0. The metric is: 

ds2 = -dt2 + r02(de2 + sin2e cicp2) 

This is a universe with energy density roo= 1 I xro2 but zero pressure (since 

there is no attraction between the particles). The total area of the 

universe is 41Tr02, giving total mass 4rr;>< independent of the size of the 
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universe (recall that mass is dimensionless). 

The physics of electromagnetism also becomes simplified 1n three 

dimensions. In 4 dimensions, both the electric and magnetic fields are 

described by the single anti-symmetric tensor FJl": 

0 E1 E2 E:s 

-E1 0 63 -B2 
FJlV = 

-E2 -63 0 B1 

-E3 82 -Bi 0 

This tensor obviously gives 3 components of electric Field and 3 compo-

nents of magnetic field, which are the vectors E and B respectively. To 

make the transformation to 3 dimensions, use the same method as to make 

9mn· that is to use only the upper lefthand 3><3 submatrix of FJ!v, setting it 

equal to f'M: 

pm = 
E1 

0 

-B l. 
Now the electric f ield E = (E 1, E2) is still a vector, but the magnetic fie ld 

B is a scalar (1). It is easily seen that by extrapolating the metric into 5 

dimensions the magnetic field would become a tensor with 5 independent 

components. Although the electric field E is always a vector, it is only in 

4 dimensions that the magnetic f ield happens to be a vector as well. 

In 4 dimensions Maxwell's Equations can be stated as two tensor 

equations for px~ 

F ocMt+ Fcro::P + F PCl':cx= 0 ( 1.1) 

Foe~:$ = kJoc where k=41C ( 1.2) 

The analog of equation (1.1) in 3 dimensions would naturally be: 

7 



F ab:c + F ca:b + Fbc:a = 0 

The only non-trivial solution to this equation arises from the case that all 

indices are difrerent, which gives: 

O = -~ + ~ + ft = cur I (E) + §It . ( 1.3) 

This is obviously analogous to the 4 dimensional vector equation: 

O=VxE+f, 

except that with only 2 spatial dimensions the curl of a vector is a 

scalar, which gives only 1 equation as opposed to the 3 equations implied 

by the vector equation ( 1.3). It should also be noted that V·B = o, which 

is the other equation that arises from equation ( 1.1) in 4 dimensions, has 

no analogy in Flatland where 8 is a scalar. From equation (1.2), we should 

get the analogous equation: 

(1.4) 

But there is no reason to assume that k=41t, since all quantities 

dependent on dimensionality should be suspect, and 41t is the amount of 

solid angle in 3 spatial dimensions. A more logical guess might be k=2n. 

the amount of angle in a plane. Let us examine equation ( 1.4) for the case 

in which a=O. This reduces to Gauss' Law: 

-fx1 + t = V ·E = kp, 

where p is the (surface) charge density. Just as Gauss' law gives an r-2 

dependency for the electric field of a stationary point charge in 3 spatial 

dimensions, there should De an r-1 dependency in 2 spatial dimensions. 

(This is because field strength should vary as the density of lines of 

force, which are r-2 and r-l in 2 and 3 spatial dimensions respectively.) 

Rewriting Gauss' Law in integral form: 
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t E·n di= kQ, 

and inserting E = O/r : 
21f 

kQ = 1 E· n di = f ~ rde = 2rrQ ~ k=2rr 
0 

Thus the 3 dimensional counterpart of equation (t.2) can be rewritten as 

pb;b = 2'.JtJll ( 1 .5) 

Actually, changing of k from 41t to 2'.Jt arises only from our decision to 

use Gaussian units. In either case the factor of k could have been 

absorbed into the definition or the unit of charge, as is the case with 

mksa units. It is also a common convention to set k=l tn both cases. 

absorbing d imens iona I r actors Into the charge. but we w ii 1 continue to use 

Gaussian units. 

Setting a=t .2 In equation (1.5), results in: 

fu-• = 21tJ1 
( 1.5) 

Which are analogous to Maxwell's equation in 4 dimensions: 

v x B - I = 21l'J 

Apparently there is some sort of analogy to the curl of B. even when B is 

a scalar. Equation (1.6) can be expressed in a more compact equation if 

we Introduce a new operator, R, which acts on a vector by rotating It 90° 

in the clockwise direction: 

RF= A (F1x + F2y) = F2x - F1U 

Rv = R <fxx + /yu> = /yx -/xu 
v . (RF):: </xx + fyY) . (FzM - F 1 y) = ~ - fy- = curl (F) 

RAF = R2f = -F 
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(RV)A = R(VA). 

This notation lets us express Maxwell's equations in Flatland as: 

V·E = 2rrp 

RVB -f = 2rrJ 

V · (RE) + aa = 0 at. 
One other important set of equations involving the electromagnetic 

tensor is its relation to the stress-energy tensor. Jn 4 dimensions: 

TJ!V: 1/41t"(gcxf>tcf"~- l/4gll"'Fccf«~ (1.7) 

ln 3 dimensions this becomes: 

( 1.8) 

where, again the change from 4rr to 2rr comes from the use of Gaussian 

units. That the factor of 1/ 4 remains the same, regardless of the number 

of dimensions, is very important. For a proof of equation ( 1.8) see 

Alpert3, or just follow a derivation of equation (1.8) using the least 

action principle from any textbook, but integrate over dx2dt instead of 

dx3dt. 

One result of electromagnetism in 3 dimensions that might seem 

curious at first is that A, the Ricci curvature scalar, if caused only by 

electromagnetic fields, is not always identically zero. This is different 

from the case in 4 dimensions, where it always vanishes if caused solely 

by FJ.111• In fact 4 dimensions is the only case for which R vanishes 

automatically, as can be demonstrated: 

In four dimensions: 

Tcxp = 114"' (F«af ~s - 114 &ex~ F ~FlB) 

Tcxor; = l141T (F°'r,F cxs - 114 socccFisF<fB) 
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Since, 

T = pc = 11 (gcxln F FJ.18 - 11 soc F FlS) oc 41f ~JI ct8 4 oc n 

= l141T' (SlJfisfJ.18 - 114 &cxocFiaF(I'&) 

= 114'1' (F llf11'8 - 114 soc ex F t8Fl8) 

= 114n (F~Ft8 - '14 4 FtgFt&) 

= 0. 

KTCX~: R«~ - 112&01.fi 

KTcxoc= Rococ - l12&oc ~ 

KT = -R 

R = KT= 0. 

Jn 3 dimensions, however, the trace of the Kronecker delta is not 4, but 3, 

and we can perform the same calculations (using latin indices and 

substituting 21( for 41() to get: 

and, 

raa = 1121t' (FJcd - 114 saaFcdFcd) 

T = 1121T (F clcd - 114 3 F cdFcd) 

T = 1 la1f F cdFcd 

l<Tab = Rab - l 12sabR 

l<Taa= Raa - l12&8aR 

KT = - 112 A 

A = -2xT = -x1141f F cdFcd. 

( 1.9) 

(l.10) 

It is very important here that the factor of 114 in equation ( 1.9) is 

independent of the number of dimensions. 

It is by these equations that al I gravitational and 

electromagnetic interactions will be governed in Flatland. 

1 1 



Notes 

l J. R. Gott Ill and M. Alpert, G.R.G. 16, 243 ( 1984). 

2 S. Deser, R. Jackiw, and G. t'Hooft, Ann. Phys. 152, 220 (1984); 

s. Giddings, J. Abbot, and K. Kuchar, G.R.G. 16. 751 (1984). 

3 M. Alpert, General Re/at ivity in Flat Janet (Astrophysics 

Undergraduate Thesis: Princeton University, 1982). 
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Chapter 2 

KALU2A-KLEIN THEORY 

The original Kaluza-Klein Theory was first published in 1921 by 

Theodor Kaluza 1 as a way to unify Electromagnetism and Gravity (the only 

two forces then known), by postulating a fifth dimension with certain 

properties. In 1926 Oskar Klein proved that several of the constraints 

that Kaluza had imposed were unnecessary2 and since then the theory has 

shared their names. The classic version of the theory is summed up as 

follows: 

For curved space in 4 dimensions in the presence of an electro­

magnetic field, the Lagrange function is given as: 

L = R + (X/ 81() F µv FJ.lv, 

(X/an ... x;2 in systems with non-Gaussian units). From this Lagrange 

function can be derived both Einstein's equation and the stress-energy 

tensor due to electromagnetic fields by extremizing the action: 

S = f Fg L d~x. 

A simple unification of gravity and electromagnetism would easily be 

obtained by finding some curvature scalar of 5 dimensions, 1s1R, such that 

f P5lQ tS>R d5x = f Fg( R + (X/an) FµvFJH>) d4x. 

Kaluza discovered that this could be done by defining CS>g such that: 
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1 ) CSlgJ.14 = bA_µ 

2) lSlgJJV = {4)9µv + (lSlgJ.14 )(C5lgv4). and 

3) the entire metric is independent of x1. 

where AJl = (cp,A) is the electromagnetic potential 4-vector. This gives: 

l = R + 1 I 4 (C5lg41) (b2) F J!v F pv 

and so t5>g41 must be a positive constant, usually normalized to unity. 

giving: 

4) tS>g44 = 1, 

and b=J Kl2n. The postulate that the metric is independent of x1 makes 

x1 a "eye! ic" coordinate, thus conserving momentum p4 along geodesics 

(see Appendix A for this proof). Kaluza postulates that p4 is proportional 

to the charge of the particle, 

P4 =~=m~ t> d't' • 

which Jets us regard the 5-vector p as the "energy-momentum-charge" of 

the particle. 

The question of why only 4 dimensions are observable to us is 

answered by giving the fifth dimension a very small characteristic length 

i, smaller than any length scale measured so far. Klein suggested that 

this dimension be periodic in 1, so that af'Yd event (t, x, x4) would be 

identified with the event (t, x, x1+ i). Here enters an interesting trick by 

which electric charge can be quantized. Quantum mechanically, if i is 

small, the uncertainty principle puts limits on the momentum in that 

direction, 

p4 ~ nh; i, 

where h is Planck's constant, and n is any integer. This quantization of p4 

in turn quantizes charge, since p1 = Q/b = ne;b (e = electronic charge). In 

fact setting the two expressions equal gives us a value for i: 
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e(~J _1/2 ~ ~ 

.l ~ h[L) t/2 ~ 8>< 1 o-31 cm 
e 21t ' 

which is very smal I indeed. 
Aside from quantization of charge, unfortunately, the Kaluza-Klein 

Theory in this simple form does not provide any new insight into the 

workings of electromagnetism. It does, however, provide a oasis for 

expanded theories whid'l are still being put forward today. one variant of 

this theory is to remove the requirement that g44 be constant, letting it 

vary as a function of x.J.1. Another variant Is to let the metric be 

periodically dependent on x1. More recent theories have added up to 7 or 

more new dimensions instead of just one. in order to account for the 

previously undiscovered weak and strong interactions. At this point, the 

most promising theories are those of 11 dimensions, the minimum needed 

by a Kaluza-Klein Theory to describe all four interactions. but the 

maximum allowed by Supersymmetric unification theories. 

In this paper, instead of adding a fifth dimension to our four, we 

will add a fourth dimension to the three dimensional universe of Flatland. 

we might expect this expaneled four dimensional universe to have some 

properties very similar to ours. but the Kaluza-Kleln constraints make it 

sufficiently different to merit further exploration. The constraints are: 

(1lg33 = l 
(1lgm3 = bA,n 

C~g :C~g + C~g C~g 
mn mn m3 3n 

<i>gJ.111•3 = o for all µ,v. 

Constraint (2.4) lets us again make the connection 
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p3 = constant ;; Q/b. (2.5) 

As might be expected in 3 dimensions, the constant b does not equal 

./ K/2rr. but instead b = ./ x/rr.. Th is w i 11 be proved in chapter 3. 

Furthermore, the newly added dimension is space-like (g33 = 1), so the 

four dimensions of Kaluza-Klein Flatland will share many properties of our 

everyday four dimensions. To emphasize this, we will call the added 

dimension "z" ( z • x3 ). 

In the next chapter we will examine one specific application of the 

Kaluza-K le in theory: the case of an electromagnetic wave and the motion 

of a test particle in this field. 

Notes 

1 T. Kaluza, Sitzungsberichte, Preussische Akadamie der Wissenschaften, 

966 ( 1921 ). 

2 0. Klein, Z. Phys., 37, 896 (1926). 
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Chapter 3 

KALUZA-KLEIN WAVE 

We will apply the Kaluza-Klein theory to the case of a charged particle 

moving under the influence of an electromagnetic monochromatic plane 

wave. First we must solve Maxwell's equations in 3 dimensions in a 

vacuum (where p=J=O). 

V·E = 0 

RVB -ft= 0 

V · (RE) + ft = 0 

(3.1) 

(3.2) 

(3.3) 

We operate on equation (3.2) with the operator V·R. then operate on 

equation (3.3) with a;at , and subtract the results to get: 

0 = ~ + -V·(RRVB) 

0 = ~ + -V-(-VB) 

o= ~· vzs (3.4) 

So B satisfies the wave equation, as we would expect. The wave equation 

for E is slightly more complex to derive. First operate on equation (3.2) 

with a;at , then on equation (3.3) with RV and add the two resulting 

equations to get: 
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0 = ~2t~ + RV[V·(RE)J 

= ~ + RV[V·(E2 x -E1Y)l 

=~+RV(~-~) 

= ~ + R [ (~ - ~~~~) x - (~:a~ -~J y ] 
but from equation (3.1 ). 

so 

or, 

0 =~+t. 

o =~+R[(~+~Jx-c~+~Ju] 

= §& + [§~s1 • g~;1J x. (~~~2. ~J u 

(3.5) 

Again, as expected, E obeys the wave equation. Notice, however. that 

there is only one polarization possible for the electromagnetic wave: all 

waves traveling in the same direction can differ at most by a phase. 

Let us choose a wave traveling in the y direction. This results in an 

electromagnetic field with the following components: 

E1 = -E0 cos[c.o(t-y)l 

E2 = 0 

B = E0 cos[c.o(t-y)J 

For a particle of charge e (small enough not to perturb the field) and mass 

m (also small enough not to contribute to any gravitational attraGtion). 

this can easily be solved by standard methods to get: 
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x = (eEo/mc.o2) COS<.O't' 

y = -l/8(eE0/m)2 w-3 sin2c.oi- (3.5) 

t = 't' - 1/ 8(eE0/m)2 c.o-3 sin2c.oi-

where 't' = t-y. The particle moves in the shape of a figure-eight. This is 

the exact same solution for a particle in a plane wave in 4 dimensions 

traveling in the y direct ion with E 11 x (see Landau & Lifschitz 1 ). We wil I 

actually solve for the motion using the Kaluza-Klein formal ism. 

First we would like to calculate the gravitational effects of the wave 

on the metric. Unfortunately this ts doomed to failure for the fol lowing 

reason: The curvature, Rmn• is proportional to terms in the 

Energy-Momentum tensor, T mn· which is in turn proportional to the 

Electromagnetic tensor squared, (Fm,)2, which is proportional to 

£02cos2[c.o(t-y)1. That is: 

Rmn a: T mn a: (FmJ2 a: Eo2cos2[c.o(t-y)]. 

Unfortunately, it is the second derivative of Rmn which is proportional to 

the corrections to the metric hmn, so: 

hmn a: ff E02cos2[c.o(t-y)J, 

which wil I always diverge when integrated over al I space and time. This 

makes sense, because an infinite plane wave will always have an infinite 

amount of electromagnetic energy. Luckily, however, the contribution is 

2nc1 order in E0, and so can be ignored in the linear approximation. 

Therefore we assume the metric: 

13)9oo ~ [ -g ~ ? ] 
We next need the electromagnetic potential Am: 

A0 = 0 

At = (Ea/ 00) siniw(t-y)J 

19 



A2 = 0 

and its covariant counterpart: 

Ao= 0 

A 1 = (Eo/ (J)) s in[(J)(t-y)l 

A2 = 0. 

From here we can apply the Kaluza-Klein theory as formulated in chapter 

2, using equations (2.1) - (2.4) 

so 

and 

which gives: 

-1 

0 
C4)g ~ 

JIV 0 

0 

l4lg. = bA· 13 1' 

C4lgo3= 0 

l4Ug13= bEo/ (J) sin[(J)(t-y)] 

(41923= 0, 

0 

I + (bEo/ 
00

)2 sin2 [(J)(t-y)] 

0 

(bEo; 
00

) sin[w(t-y)J 

0 0 

0 (bEo/ 
00

) s in[(J)(t-y)] 

0 

0 

It should be noted that g11 has one term of 2m order, despite the fact that 

we just decided to only use the linearized equations. Strictly speaking, 

this term should be dropped, but the solutions presented above for x, y & t 

(equations 3.6) do contain 2m order terms. If we want to keep any hope of 

calculating them we must keep some 2m order terms. Of course if our 

final results are incorrect in 2nd order terms, we know why. 

Next we calculate the connection coefficients: 
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r 0<~1/ = 1 1i{goc~.l + 911cc.~ + g~11): 
r 011 = -[ (bE0)2 / w ] s in[w( t-y)] cos[w( t-y)l 

= -r,01 = -r110 = -r211 = f 121=f112 

r013 = - 1/ 2bE0 cos[ro(t-y)] 

= ro31 = -r103 = -r301 = -r130 = -f310 

= -r213 = -f231 = f 123 = f321 = r132 = f312 . 

All other f ccJ'b' = 0. In order to find f0t~1 we need gJlv, which is defined 

such that g11vg"'" = S11": 

-1 0 0 0 

0 0 -(bEo/ w) sin[w(t-y)J 
gJIV = 

0 0 0 

0 -(bEo/ 
00

) sin[ro(t-y)] 0 1 +( bEo/ ro )2 sin2[ro(t-y)J 

Now we can calculate rx,, = g«Pf P~l • keeping in mind that r<x~11 = roc11~ • 
r0

11 = g00r0n = [ (bE0)2/w] sin[ro(t-y)] cos[0>(t-y)] 

r0
13 = g00r 013 = 1I2 bE0 cos[ro(t-y)J 

= r0
31 by symmetry 

r
1
01 = g11r101 • g13r301 

= [ (bE0)2 /w 1 sin{ro(t-y)J cos[w(t-y)] 

+{-(bEo/ CJ) sln[w(t-y)]}x{1/2bE0 cos[ro(t-y)l} 

= 1/ 2[ (bE0)2/oo] sin[oo(t-y)] cos[ro(t-y)] 

= r 110 by symmetry 

f 103 = g11f103 = 1/2bE0 cos [co(t-y)] 

= f 1
30 by symmetry 

r 112 = g11r112 + g13r312 

= -[ (bE0)2 /co J sin[w(t-y)] cos[co(t-y)} 

+{-(bEo/ 00) s in[co(t-y)]}x(-'I 2bE0 cos[ro(t-y)l} 
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= - 1/2[ (bE0)2; 00 1 sin[co(t-y)] cos[co(t-y)] 

= r 1 t2 by symmetry 

f 123 = g 11r 123 = - 1I 2bE0 cos [c.o(t-y)l 

= r 1
32 by symmetry 

r2 11 = g22r211 = [ (bE0)2 /c.o ] sinlw(t-y)l cos[oo(t-y)] 

f 213 = g22f213 = 1/zbEo cos [oo(t-y)l 

= r 2
31 by symmetry 

f 301 = 933f301 + Q31 f101 

={I+ (bEo/00)2 sin2 [oo(t-y)J}x{l/2bE0 cos [m(t-y)]} 

- {(bEo/ 00 )sinfw(t-y)]} x {[(bE0)2 ; 00 ]sinfw(t-y)]cosfw(t-y))} 

= {1I2bE0 cos [w(t-y)]} )( { I - (bEo/ w)2 sin2 [oo(t-y)J } 

~ 1I2bE0 cos [oo(t-y)J 

= r3
10 by symmetry 

f 3 12 = g33r312+931f112 

={ 1 + (bEo/ w)2 sin2 [w(t-y)] } x {-I/ 2bE0 cos [c.o(t-y)J} 

+ ( (bEo/ w> sin[oo(t-y)] } 

x { -[ (bE0)2 /w 1 sin[c.o(t-y)] cos[w(t-y)] } 

= -{ 1/ 2bE0 cos [w(t-y)]) x { 1 - (bEo/ 
00

)2 sin2 [w(t-y)}} 

== - 1/zbE0 cos [w(t-y)l 

= r3
21 by symmetry, 

and all other ru,11 = 0. Now we are ready to use the geodesic equation. 

There are no external forces since in the Kaluza-Klein formalism the 

effects of electromagnQtism are mimicked by the extra dimension. 

o = ~
2

$ + r>1 °'' ~oc ~' 
For convenience of notation, let f =~(not ~). 

0 
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0 

0 

0 

= t + [(bE0)2/ w Js in[w(t-y)]cos[w(t-y)J >(2 + 2 1I 2bE0 cos[w(t-y)}xz 

= t + bE0 x cos[w(t-y)] x { (bE0/w) x sin[w(t-y)l + i} 

= d2x1 + 2r101~0.ms.1 + 2r103 ~0~3 + 2r1,211>i1~2 .. 2r123 ~2ctx3 
d? d't' d't' d't' d't' d't' d't' d't' d't' 

= x + 2· 1/2 [ (bE0)2/w ] sin[w(t-y)] cos[w(t-y)] tx 
+ 2· 1/ 2 bE0cos[w(t-y)1 tz 
- 2· 112 [ (bEo)2/w 1 sin[w(t-y)] cos[w(t-y)] xy 
- 2· 1/ 2 bE0cos[w(t-y)l yz 

= x + bE0 (t-y) cos[w(t-y)] x ( (bEo/ 00) x sin[w(t-y)] + z} 
= d2x2 + r2,, ~ 1.ws_ 1 + 2r213 .ws_ 1~3 
~ d't d't' dt: Ctr: 

= y + bE0 x cos[w(t-y)J { (bEo/ w)x sin[w(t-y)l + i } 

= d2x3 + 2r301 ~o.ms.1 + 2r'312 ~t~2 
~ d't' d't' dt: d't' 

= z + 2· 1/2bE0 cos [w(t-y)] tx -2· 1/2bEo cos [w(t-y)] xy 
= z + bE0 x cos[w(t-y)1 

t-y = O ~ t-y = constant = 1 => t-y = 't'. 

Now since x3=z is a cyclic coordinate (gµv,3= 0), we know that the z 

component of the covariant 4-velocity is conserved, and we make this 

component proportional to the charge, as in equation (2.5). 

~ =constant• fi1n = g3µ~= 931 ~ + Q33i 

tfrn = (~o) x sin[w(t-y)] + z = (~) x sinw't' + z 

x = -(9Eo/ m> COSC&>'t' 

x = -(0Eo/ mw) sin<D't' 

x = (0Eo/ mw2) COS(J.)'t' 

t = [ (eE0/m)2 /(J.) 1 sin(J.)'t' cosw't' 

23 



t = -ceEo/2mw)2 cos2w't' + c1 

t = -l/ 8(eEo/ m)2 w-3 sin2w't' + Ct't' + Cz 

since t -+ 't' as e -+ o 
t = 't' - t/8(eEo/m)2 w-3 sin2w't' 

y = t - t' = -1/e(eEo/m)2 w-3 sin2w't' 

which gives us the results desired in equation (3.6), even to 2m order. 

Unfortunately, when we calculate z from conservation of momentum: 

e;bm = (bEo/ 00) x sinro't' + i 
we get 

i. = e;bm + (bEo/ w) (eEo/ mc.o) sinro't' sinrot' 

z = 2( ebE02 /mw ) sinw't' coswt', (3.7) 

but from the geodesic equation: 

Z =bEo (-0Eo/ mw) Sinw't' COSwt' 

= - ( ebE02 /mw ) sinwt' coscut', 

which is inconsistent with (3.7). So here the equations are .oQ1 valid to 

2M order in z, and at t we know is that 

z = e't' /bm 

to first order only. 

Now compare this Kaluza-Klein metric to the case of a gravitational 

wave in the standard 4 dimensional case. Use the linearized Kaluza-Klein 

metric: 

(4lg !=I: 

J.i" 

-1 

0 

0 

0 

0 

0 

(bEo/ 
00

) sin[w(t-y)] 

or 9µv = 11 µv + hµ1,,, where hµv is given by: 
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0 

0 

0 

(bEo/ 
00

) sin[w(t-y)J 
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0 0 0 0 

0 0 0 (bEo/ m) sin[w(t-y)J 
hµv ~ 

0 0 0 0 

0 (bEo/ w) sin[w(t-y)J 0 0 

This is the form of a linearized gravitational wave with "x" polarization, 

and it is exactly what we should have predicted, because in the 3 

dimensional case, there are no gravitational waves, only electromagnetic 

waves. In the Kaluza-Klein 4 dimensional case, however, there are no 

electromagnetic waves, so anything traveling at the speed of light with 

the form of a wave must be a gravitational wave. Usually in 4 dimensions 

there are two polarizations of a gravitational wave: the "x" polarization & 

the "+" polarization. Jn 3 dimensions there is only one polarization for an 

electromagnetic wave. What happens to the "+" polarization? For "+" 

polarization, hµv must be of the form: 

0 0 0 0 

0 K sin[ro(t-y)J 0 0 
hµ., ~ 

0 0 0 0 

0 0 0 K sin[ro(t-y)J 

This would mean: 

Q33 = T\33 + h33 = 1 + K siniro(t-y)] , 

but the Kaluza-Klein formalism states that g33 must be a constant, or else 

the strength of the electromagnetic force would vary with distance. We 

conclude that there is only one polarization allowed in the Kaluza-K lein 4 

dimensional case, the ux" polarization, and that it corresponds to an 

electromagnetic wave in 3 dimensions. 
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Now we calculate the value of the constant b, (=/K/21'( in the higher 

dimensional case). Let us calculate the other relevant quantities of the 

system: 

-l 0 0 0 

0 O -(bEo/ 00) sin[ro(t-y)J 

0 0 0 

o -(bEo/ co) sin[w(t-y)J 0 

ro13 = r103 = -r123 = r213 = -r312 = f301 = t/2bEocosoot' 

=r031 = r 130 = -r132 = r231 = -r321 = r 310 

(all other rx,b' = 0) 

Rµv = R«jJcxV = rxµv,ot - rxjb,V + f'X,J~µv - rx,f,ocµ 
= rocµv,cx - roc~l'ocjl 

Rao = - rcx,or'°'o = -2r13of310 

= -1 I 2(bE0cosw 't' )2 

Rot = 0 

Ro2 = - rocJf~0tO = -f132r310 -f312f130 

= 1 l.,(bE0coscot')2 + 1I 4(bEoCOSco't')2 

= 1I 2(bE0cosw't')2 

Ro3 = 0 

R11 = - f"<Xp1f'oc1 = -2r031f301 - 2r231f321 

= - 1I 2(bE0coswi-)2 + 1I 2(bE0cosw't')2 

=O 

R12 = 0 

R13 = 0 

R22 = - rcx,f'oc2 = -2r132r312 = -l/2(bEoCOSWt')2 
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R23 = 0 

A33 = - r«~f~cx3 = -2ro 13f 103 - 2r013f103 

= - 1/ 2(bE0cosw't')2 + 1/ 2(bEoeosw't')2 

=O 

and Rpv = R~P . This can be expressed easily in matr i)( form: 

[ 

-1 0 1 0 ] 
Rµv = 1/ 2(bEocosw't')2 9 g -~ g 

0 0 0 0 . 

Now we solve for AJ1 v = gJJotRocv: 

or: 

R0 
0 = goo R00 = + 1 I 2(bE0cosoo 't' )2 

R0
2 = goo Ro2 = -1I2(bE0cosw't')2 

R2a = g22 R20 = + 1/2(bEocosoo"t")2 

R2
2 = g22 R22 = - 1I 2(bE0cosoo't' )2 

[ 

1 0 -1 
RJJ v = 1 / 2(bE0cosw 't )2 0 0 0 

1 0 -1 
0 0 0 I J 

The Ricci curvature scalar vanishes identically: 

R = Rex oc = Ro o + R22 = 0' 

so: 

xTPv = GPv = RPv + 
1/2SPvR = RPv = 1/2(bEocosoor:l2 [ i I :f ~ ] . (3.al 

Now let us calculate rmn• using equation (1.8): 

rm n = 1I211' {gabFmlf nb - 1 / 4 gm rf abFab) 

= 1I211' (F'mF an - 1 I 4 sm l abFab) 

Let us first solve for the second part, F 8bF8b, recalling that 

Fo1 = -Flo = E1 = -E0coswt.' 
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so, 

and, 

= -Fo 1 = F 10 

F12 = -F21 = B = E0cosoot: 

=F 12 = -F21. 

rm = 1/ F8Mf : n 21r an 

roo = 1 I 21t' (FD 1F o 1) = + 1I21T (EocOSoo't')2 

ro2 = l I 21t' (FO 1F2 t) = + l I 21t' (EoCOSoo 't' )2 

T2o = T/21t' (F21Fo1) = -1/21t' (Eocosoo-r)2 

T22 = 1I21t' (F21F21) = -1I21t' (Eocosoo't')2' 

and al1 the rest of rm0 are identically zero. This gives: 

0 -1 ] 0 0 
0 -I . 

Comparing this to equation (3.8). it seems most natural to identify 

b2 = 1Cf x 
b = /1CIX, 

and so we have determined the constant b. 

Notes 

1 L.D. Landau and E.M. Lifshitz. The Classical Theory of Fieldsl 

(Addison Wesley: Reading. MA 1962). 
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Chapter 1 

STATIONARY CHARGE 

The case of a single stationary charge in Flatland is discussed 

extensively by Alpert, 1 so I will only briefly present his conclusions. A 

massless particle of charge a at r=O causes a radial field of E = O;r r 
(analogous to the E = O/r2 r field in 3 spatial dimensions). This 1 Ir 

dependence holds exactly even as space-time curves in the presence of the 

electric field energy, as long as the coordinate r is defined in terms of a 

circumferential radius. The metric in this space is given by: 

(This metric was arrived at by assuming only that the metric was of the 

type ds2 = A(r)dt2 + B(r)dr2 + r2dcp2 and that the electric field was 

radial.) The parameter r c• which determines the scale of the system, is 

analogous to R=2GM in the Schwarzchild metric. It is interesting to note, 

however, that r c is independent of a, a dimensionless quantity (actually it 

is xa2 that is dimensionless, but we are taking K as dimensionless as 

well). It is easily checked that t is timelike and r is spacelike only for 

r<r c• but discussion of this wi II be delayed unti I chapter 5. 

First let us analyze the metric. Define the radius rm= 
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rm = r c exp(-21l'./ 'KQ2) (4.1) 

Note that rm< r c always. This is the radius at which g00=-1 and g11= 1, or 

ds2 = -dt2 + dr2 + r2d<J>2. 

Let us look at the behavior of the metric at this and other important 

points: 

as r-+Q: g -+ -co 
tt g -+ O+ rr 

at r=r : m gtt= -I 9rr = I 

as r-+r c-: 9tt ... 0- g ... co rr 

as r-+rc+: 9tt-+ O+ g .... -co rr 

as r-+ oo: 9tt .... 00 9rr-+ 0-

0ne of the clearest ways to view the properties of a metric is its 

imbedding diagram. For r<r m the curvature of the metric is negative, and 

we must imbed the metric in Mirkowski space instead of Euclidean space, 

so the horizontal axis is imaginary. 

Diagram 4.1 

(It should be noted here that Alpert did not allow any electric field inside 

the radius rm since this produces nnegative mass" by giving angle excess 

instead of angle deficit. Since there is no reason here to avoid angle 

excess, we wi 11 not worry about this restriction.) For rm <r<r c the metric 

can be imbedded in ordinary Euclidean space. At r=rc, however, Alpert 
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calculated that the mass and angle deficit would become imaginary, which 

must be avoided. Alpert therefore claimed that the universe must stop 

growing at r=r c and must then turn around and shrink in r back to rm (and 

beyond to r=O), where there would be another charge with opposite sign, 

-a. This results in imbedding diagram 4.2. 

t· ... 
I ... : -+ : 

rmt E• 

• ~ ... ' 

Diagram 4.2 

Since the function that represents the curve in both diagrams is 

continuous at rm· we can join the two into one diagram. representing all or 

Alpert's universe. The important features or this universe are that it is 

static, closed, and electrically neutral. 

... 
tc ~ 

-+ 

rmt E • -Q 

• 
• 

Diagram 4.3 

As will be shown in chapter 5, this view of the universe is partially 

correct, but incomp Jete. 

We can solve for the motion of a charged, massive particle in the 
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gravitational and electromagnetic fields of this universe using the 

geodesic equations of General Relativity (again, assume small mass m and 

charge e so that the metric is not sufficiently perturbed). Recalling that 

the metric is given by 

ds2 = ~ in(L) dt2 - ~( in(L) J-1 dr2 +r2dcp, 
21l' re KQ r c 

this gives us 

900 = ~ in(L) = (goor1 
21T r c 

911 = _ ~[ in(LJ J-1 = c911r1 
KO re 

922 = r2 = (g22t I 

and al I other gmn=O. Next we calculate the components of r abe: 

foo1 = ~-1 
2rc 2r 

= ro10 = -r100 

r111 = ~g2 t[ in(~J ]-2 

f 221 = r 

= r 212 = -r 122. 

and aH other r abc = 0. The calculation of f 8bc is espec1ally easy when 9mn 

is diagonal: 

roo 1 = goor oo 1 = ~~2 [ 1n (~) J-1 ~~2 fr- = fr [ in(~) J-1 

= r<110 

r 1oo = g11f100 = -~ 1n(L) ~ J.:. = (~ 2 -b 1n [L) L1t re ~ ,r R ,r re 

rt 11 = g11r111 =-~1n(L) ~ _!_[ tn(LJJ-2 =.:.L[ in(LJ)-1 
21l' r c KO 2r r c 2r r c 

f 122=g11f 122 = -~ in(L) (-r) = ~ r .ln(L) 
L1t re L1f re 

r212 = g22r 212 = (I I r2) {r) = I Ir 
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= r221. 

and all other ra~ = o. 
In an electromagnetic force field the equation of geodesic motion is: 

.i.Fm dxa = d2)(m + rm ~a .Q.Kb 
m 8 d't' Ci? ab dt' d't' 

Jt acFMC _dK8 
: d2X~ + rm ~a dXb 

mg err d't' 8b dt' Cfi: . 

For a=2 (x2:cp): 

0 = d2<D + r2 ~a ~b 
~ ab d't' dt' . 

There is one simplification we can make here. Since there is no force in 

the <P direction, and since the metric is independent of <P. the <P component 

of the covariant momentum is conserved (see Appendix A). 

~ = constant = u2 = g22 ~ = r2 ~ 
d't' d't' dt' 

~ = U2 .1 I 2 dt' r 

We do not have this convenience in the other direct ions. 

and, 

_g_Q11Fo1~ = d2xJ + 2roo1 ~~ 
m dt: dt' dt' dt' 

i 21I. .o.n-1 [LJ (=Q.) !1!:. = d2t + l [ in [LJ ] - 1 dt m:. 
m 'K02 r c r di- Ci? r r c dt' di-

0 = ~ + ~ 21r2 ln-1 (L) (~) fil:. + 1 [in [L) ] - I Qt ~ 
dt' m KO r c r dt' r r c dt' d't' 

.!lgooF10 sa.... = x + f'oo li4.Q.... x + r1,, IDS..:-+ r'22 ~ L nvO ~I rtvO * ~ d 1 rtv2 d 2 
m d't' di- dt' t' 't' d't' d't' d't' 
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This gives us two equations in two unknowns (r & t), but both equations 

are extremely nonlinear in r and not easy to solve. We shall forgo solving 

the equations in general because of their difficulty. There is, however, one 

particular case which is both interesting and readily soluble: the case of a 

stationary charged particle for which the gravitational "force" is exactly 

balanced by the electric force. In this case, we use equation (4.2) with 

r=constant, to get: 

O = §.~in (LJ Q.cil + (~) 2 J.:- in [LJ 41 2 
m W r c r O't' L1f "'r r c d-r 

We can determine dt; d~ from the metric, using the fact that d'l:2=-ds2 in 

the case that dr=d'P=O. This gives us: 

~ = cl~J 1/2 [-.o.n c~J ]-1/2 

so: 

fil= - 2L2i(-in(L1] 1
/

2 = V(r) 
e .fK re-> 

where V(r) is the electrostatic potential measured from r c• which wi ti be 

proved later in this chapter (equation 4.3). This reduces to the extremely 

simple equation eV=-m for a stationary test particle. First of all note the 

sign: the charge must be negative (attracted to the charge Q) in order to 

remain stationary. This mean that the test particle would fly away from 

r=O if it were not charged. The gravitational "well" outside the charge is 

upside-down. This should not be completely unexpected, as we are fully 

aware that there is no Newtonian limit in 3 dimensions, and so we should 

not expect Newtonian-like results. We must also remember there is 

mass/energy from the electric field produced by the oppositely charged 
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source, -Q, at "the other" r=O, which also contributes to gravitational 

interactions. 

As promised above, we now calculate the potential, which is defined 

with reference to some from arbitrary radius r 8 < r 0: 

V(r') = J r
1 J ra 

E·ds = Er ~ dr (for dt=d<j)=O) 
r' r' 

V(r') = 

V(r) = 2 IJ! ( [- .O.n ({e)) v2_ [ - .D.n (~J} 1/2) 

Note that this is independent of Q(!). It seems clear that an obvious point 

of reference from which to determine potential would be to set r 8 =r 0, so 

V(r) = 21f_ [-in(~ J 1/
2 

(4.3) 

as stated above. Any explorer starting a quest to solve this case using 

the Kaluza-K lein formalism should use this quantity to determine g03, and 

proceed from there. 

For completeness, let us continue solving for important quantities of 

this system. Recalling the definition of R8bcd and Rmn= 

Ra = ra - ra + ra rm - ra rm bed bd,c bc,d me' bd md1 ···be 

A = Ra = ra - ra + ra fb - ra fb mn man mn.a ma,n ba mn mb na 

= f 1 - ~ ra + ra fb - ra l""'h mn.t 0 tn ma,n ba mn mb1 -na 

since all 9mn are functions of r (=x1) only. Now we solve for the 

individual components: 

Roo :: f 100, 1 + f 1ooCr010 + f 111 + f 212) -2f001f1oo 

= r100,1 + r100C-f010 + r111 + r212) 

= 1 (1~.Q~) 2 
r· ;6- .Jiin2 [L) + l..tn [L) CI 1n (LJ-l..ln [L) +l..]] 2" N r r r c r r c 2r r c 2r r 0 r 
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=O 

Rot = 0 

Ro2 = 0 

A11 = r 111.1 - r 010.1 + r 111.1 + r 212.1 + r 111<r0 10 + r 1" + r212) 

- r 010r0 10 - r 111r111 - r 212r2 12 

= - r 0 10.1 + r 2 12.1 + r 111<r0 10 ... r212) - r01or0 10 - r2 12f2 12 

= - r 010.1 + r 212.1 + r 010Cr111 - r 010> + r 212 (f111 - r212) 

= -1 (-;6[1n(LJ]-2 • [ln(LJ]:;lz) - .:J,-
2 r re re r r 

=O 

R12 = 0 

+ fr [in(~) ] -l (~ [in(~)] -l - fr [in(~) J- 1
) 

+ 7 (~[ ln(~) ]-1 -~) 

R22 = r 122, 1 + r 122<r0 10 + r 1, 1 ... r 2 12) -2r2 ,2r122 

= r 122.1 • r 122<r010 • r 111 - r 212) 

= ~[ 1 + .O.n(LJ 
2rr r c 

+ r ln[L) ( l.. [ln[LJ)-l -.l [tn[LJ J-l - lJ] 
r c 2r r c 2r r c r 

= ~ [ 1 + .O.n(L) - .O.n(L)] 
~ re re 
=~ 

2rr 

So a II components of Rab are ident ica I ly zero except for R22. Th is means 

that the only non-zero component of R8
8 is: 

R22 = g22R22 = ~ ~~2. 

and the Ricci sea lar is: 
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Of course this could have also been derived from equation ( 1.1 O): 

A= -K1/41r (Fo1Fo1 + F 10F10) 

= -v 1, (-02 I 2 - 02 I 2) 
~ 41T r r 

-~L 
2n rz ' 

Notes 

1 M. Alpert, General Relativity in Flat/an« (Astrophysics 

Undergraduate Thesis: Princeton University. f 982). 
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Chapter 5 

INSIDE-OUT "BLACK HOLE" IN FLATLAND 

Let us examine the recall the behavior of the electrostatic metric 

for r near and greater than r c· The metric is: 

ds2 = ~ !n(~ dt2 - ~[ ln(~~ ]-I dr2 + r2dcp 

as r-+r -: c g ... o-tt g ... 00 rr 

as r-+r +: c 9tt-+ O+ 9rr -+ -oo 

as r ... oo: 9tt ... 00 g ... 0-rr 

In his thesis Alpert noted the interesting behavior of the metric near 

r=r c- 1 He even not iced that this behavior is very s i m i I ar to the 

schwarzchild radius of a black hole. He stopped pursuit here, however, 

claiming that his universe must be closed and have finite mass. To do this 

he declared r c the edge of his universe and decided that the universe 

turned around back on itself at this point. We can continue following the 

black hole analogy, however, and see that r becomes timelike instead of 

spacelike, and so continuing along r>rc would not change the spacelike 

character of the universe. We will here investigate some of the 

phenomena associated with r>r c for the metric. 

As we continue a long past r c• r changes from time I ike to space Ii ke, 
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and t changes from spacel ike to time like. Qualitatively, it is the same as 

what happens at r = 2GM in the schwarzchi Id metric, except the change 

occurs going from small r to large r. instead of the other way around. In 

fact it is even more similar to the case of the black hole in 4 dimensions 

with charge Q</GM. where there are an imer and outer horizon at r_ and 

r •. If we could somehow force r.-.oo, then re would be very much liker_. 

To be certain the black hole analogy holds, we must be sure that the 

apparent singularity associated with the metric at r=r c arises purely 

from the coordinate system, and not from the metric itself. First we 

must check that the proper distance from r=O to r=r c is finite. If this 

distance is infinite, it hardly matters what happens at r c• since no 

observer could arrive there in a finite time. To determine the proper 

distance, let us choose a radial curve from O to r c for which time is 

constant (dt = df = 0). 

ds2 = - ~[ .ln(L)] dr2 
J<Q re 

s(O,rc) = (ds = (c(~~) 112 [-.tn(~) (12 dr 

1 

= J 0 (~~) lf2 re [-l.n(p)f l/2 dp 

w = [-.ln(p)J 1 / 2 p = exp(-w2) 

dw = -1/2 [-in(p)r 1
/2 p -1 dp = -112 [-in(p)r1l2exp(w2) dp 

00 

s = J (~) 112 2 re exp(-w2)dw 
0 xa 

s = (21f) 
112 

2 re 1 Ii =file (2.J 112 

KQ7 2 Q )( ' 

which is most definitely finite. 
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Secondly, we must be sure that the invariant curvature scalars of the 

metric are non-singular at r c- From Weinberg2 we find that there are only 

3 invariant curvature scalars associated with the metric in 3 dimensions: 

R, Amr-Rm'\ and g~t ~ . 
We recall from chapter 4 that all Rmn = o except R22 = ><0

2
/2n· all RJJv = o 

except R22 = xa2
1(2nr2). and all RP"= o except R22 = xa2

1(2nr4). This 

gives us the 3 invariant curvature scalars as: 

R = R22 = xQ2 I (21Cr2). 

RmrAmn = R22R22 = (~Cf J 2 +-. 

det R = ~ = o 
det g -r ' 

none of which show any singularities at r c• although there is a true 

singularity in the curvature at r=O. 

Having now shown that the apparent singularity at r c is purely an 

artifact of the coordinate system (t, r, <9), we should try to find a new 

coordinate system, analogous to the Kruskal coordinates of a Black Hole, 

in which the apparent singularity would not appear.3 

First, for convenierce of notation, let us define an effective radius M 

(with units of length): 

The metric can be written: 

ds2 =Ff ln (TcJ dt2 - ~[ ln (TcJ] ~1 dr2 +r2dcp 

One property we would like is that light beams be orthogonal in this 

coordinate system. This would be true in a coordinate system of the type: 

ds2 = f(r* ,t) (-dt2 + dr*2) + g(rM ,t)dcp2 
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This is easily accomplished by defining 

so. 

dr* .. - 11- _Q[__ 
re ln(r /re) 

ds2= -rc/M ln(r/rc) (-dt2+dr*2) + r2d<j>2 

and r is now an imp licit function of r*, defined by the equation 

r* = -M Jr ru:Lr..L... 
0 ln(r' /rc) 

= -M ( ln I ln (~~ I + .Q.n (~~ + (~5{rc))2 + (1~~3~rc))3 + ... J 

= -M ln f in (~ ~ F (~ ~ I · 
where the function F(p) is defined: 

F(p) •exp( tpfi + ~2+ ~3+ ... J = pexp( ~2 
+ '!~)3 + ... J. 

Note that F(p) is perfectly wel I behaved, in fact F( 1)=F'(1)= I (see appendix 

B), so there are no singularities being hidden at r c by this function. This 

metric is sti 11 not a good one at r c• however. so we must somehow remove 

the .ln(r/r c) in front, preferably incorporating it into some new function of 

r* & t. We a Isa want the ln(r /r c) term to be absorbed equally by both 

terms so that light rays will remain orthogonal. We find the functions U 

& V fit the bill. 

u !f exp ( ~tf*J = exp C2h-J exp c2M*) = exp cir=;J (-in (~cl F (~)) 
1
I2 

V = exp (-~~f'J = exp (2~) exp (2~*) = exp(~) (- 9.n (~) F (~c) ) 
1
I2 

Note that these definitions only apply for r<rc, where 

1.0.n [fcJ I = - in(~ , 
so for the time being we will confine ourselves to this side of r c· 
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UV= -F (~d) .ln (~c) = exp (-~r) 

so. 

and, 

dU = 1f1 exp ( ;~*) ( dt-dr"J 

dV = dM exp (-~f:{*J (-dt-dr*J . 

which gives us 

(-dt2+dr*2) = 4M2exp( 1:f-) dU dV 

ds2 = 4M re F~Yrc) exp( r~ ) dU dV + r2dcp2, 

and we end up with, 

ds2 = filLL d.J dV + r2dcp2 
F{r/rCJ ' 

where r is a function of U & V. 

This as it stands is a perfectly valid coordinate system, but U & V 

are nult coordinates; we can easily replace them with more familiar 

timellke and spacelike coordinates: 

u = f (U+V) = exp (-2~) cosh C-iMJ = (-in(~ F (~)) 112 
cosh [fM-J 

v = l (U-V) = exp (.r._) sinh [...L] = (-.Q.n [L] F [L]) 
11

2 sinh [...L) 
2 2M 2M re re 2M ' 

which gives us 

so 

du = 112 (clJ+dV) 

dv = 112 (dU-dV), 
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-dv2 + du2 = dUdV 

ds2= f~rl~c) (-dv2 + du2) + r2dip2 . 

Recalling the definition of M, we get for our metric: 

ds2 = &rcr5 (-dv2 + du2) + r2dcp2. )( :t:f(r re) 

This is the metric in good coordinates for r<rc. Notice that r is now a 

function of u & v, defined implicitty by the equation 

u2 - v2 = -F(r/rc) .Q.n(r/rc). 

(We can calculate t from u & v by noticing that 

v I u = tanh(t/ 2M) 

t = Wf tanh-1 (~) .) 

The same procedure can be applied in the case of r>rc, with suitable 

changes in the definitions of U, V, u, & v, remembering that for r>re. 

I ln(r/rc) I = .ln(r/rc). 

Following the same steps as above: 

U ~ exp(~)=exp(~)exp(*) = exp(1ffJCin(~c) F(~J )
112 

v • -exp (-~r{*J =-exp (~J exp C2f1J = -exp C2hJ (in(~~ F (~) ) 
11

2 

lN= -F (~ cJ in(~ cJ = -exp Cf:t) 

dU = dM exp ( ~tf*J ( dt-dr*) 

dV = 2}\- exp C~t:f*J (-dt-dr*) 

(-dt2+dr*2) =- 4M2 exp ( ~*) dU dV 

43 



ds2 = 4M re .J.lL.. exp( r* ) dU dV + r2d<P2 = 1t1..fi_ dU dV + r2dtp2 
F(r/rc) M F(r/rCJ 

u = ~ (U+V) = expC-5~J sim[fttJ = (.0.n(~ F(~)112 
sinh(fttJ 

v = ~ (U-V) = exp C-2MJ cosh [iff J = (.O.n (~J F (~~) l/ 2 cosh [1ffJ 
du = 112 (dU+dV) 

dv = 112 (dU-dV), 

-dv2 + du2 = dUdV 

ds2= ~ (-dv2 + du2) + r2dcp2. 

ds2 = 8t¥12 (-dv2 + du2) + r2dcp2 x F r/rc) 
Note that this metric is the same as above for the case that r<rc. Note 

also that u2-v2=-F(r/rc)in(r/rc) is still true, regardless of whether r<rc 

or r>rc. (In this region we get a different equation for t in terms of u & 

v: 
t = ~ tanh-1 (~) . ) 

Next we try to show that the metric in terms of u & v is complete. 

We do this by showing that the total proper time between v=O and v=oo for 

u=O (which is the same as the total proper time between r=r c and r=oo for 

t=O), is infinite. 

ds2 = - ~i2 [ in(~~] -1 dr
2 

for dt=dcj>=O 

Joo Joo 1 1/ 
t'(rc.oo) = dt' = (~) 12 ( .ln [L1 ]- 2 dr 

re re xa rcJ 

Joo 1 -1/ 
= (~a ] 12 re [ .ln(p)J 2 dp 

1 )( 

w = [in(p)11I2 p = exp(w2) 

dw = 1I2 [in(p)J-1I2 p -1 dp = 1I2 [in(p)J-1I2exp(-w2) dp 
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00 

't' = J (~) 112 2 re exp(w2)dw = oo 
0 )(Q 

Since the proper time elapsed from v=O to v=oo is infinite, we can 

conclude that this coordinate system is complete. (Actually, there is one 

direction in which we have not proven that the metric is complete. and 

that is along null paths of (u !. v) = constant. This calculation is very 

difficult, however, and it will not be attempted here.) 

Now we can see how various points and curves transform from the 

(r.t) plane onto the (u.v) plane in diagram 5.1. The line t=O corresponds to 

the I ine v=O. For r=r c we get u2=v2, which are the two I ines u=v and u=-v. 

t r=oo 
II 

111 I 

J. r=oo 
IU 

Diagram 5. t 
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The region r<r c is the same as u2>v2, which is represented by regions l 

and 11 l. The region r>r c corresponds to u2<v2. which is represented by 

regions II and IV. We know from appendix B that when r=O, 

F (r Ir c) ln(r Ir c::):;-1 , so u 2-v2 = 1 • shown as the two shaded hyperbo I as. 

There is a true singularity here, so any points beyond these curves can not 

be interpreted within General Relativity. The other curves follow easily 

from the definitions of u & v. 

There are obvious s Im ilar it ies with the schwarzch i Id case w i th the 

u-v plane turned on its side. From this diagram we can see that the 

horizon at r=rc is not a true event horizon, but, as noted above. is 

qualitatively very similar to the inner horizon, r _, of a charged black hole 

in four dimensions. The most important feature of this horizon is that the 

singularity "behind" it is avoidable along timelike geodesics. 

The following two diagrams are embedding diagrams of this space in 

a higher dimensional space. The first is along the hypersurface t=O, from 

one r=O, to r=r c• and back to the other r=O. As the reader can see, th is is 

the same imbedding diagram as (4.3). 

.. t· .. 
rmt • -Q 

• 
• 

Diagram 5.2 
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Diagram 5.3 covers a part of space-time which is not dealt with at all in 

chapter 4. This is one of the hypersurfaces r>r c• which are shown as 

hyperbolas in diagram 5.1. Along this hypersurface, the electric field 

I ines are constant. and the fie Id lines arise from charges that are 

infinitely far away (Gauss's law is still satisfied). Remember. however, 

that in this section of the universe r is tirnelike; it is t that is spacelike. 

r 
E 

Diagram 5.3 

As time progresses, r increases. and we can see tnat diagram 5.1 

represents an evolving cosmology, much more than just the static 

universe Alpert had surmiseci.1 This universe does not expand 

isotropically, but with a cylindrical symmetry (the Hubble constant is 

dependent on direction). 

on another note the reader shoulc:I take heed that, while this 

cosmology behaves perfectly well within the realm of General Relativity, 

there may still remain problems when quantum mechanical effects are 

brought in. The primary question in this area is whether this universe is 

stable against pair-particle creation In hlgn electric fields as r-+O; if it Is 

unstable, region II of the universe might not form. and the universe would 

end in a finite proper time once r c is crossed. 
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Notes 

1 M. Alpert, General Relativity in Flat/an« (Astrophysics 

Undergraduate Thesis: Princeton University, 1982). 

2 S. Weinberg, Gravitation and Cosmology. (Wiley and Sons: New York, 

1972). 

3 The methods used in this section are adapted from those used in: 

C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, (W.H. Freeman: 

San Francisco, 1973). 
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Appendix A= Cyclic Coordinates 

Conservation of covariant momentum along a geodesic for cyclic 

coordinates is an important tool in solving for particle motion in General 

Relativity. Yet a straightforward proof or this that does not use the 

action principle is dificult to find in the literature. Below is a fairly 

simple proof, mooified from Lightman et al. (see Bibliography). 

Given: 
1) u«= ~ 

dA. 
2) QcxJ,3 = 0 

0 = 

= 

= 

= 

= 

= 

.CW.J1 + r" cxJ uocu J 
dA 

9siid.W1 + r&cJ uocuP 
dA. 

g&ocQu.oc + f&tJ uocu~ 
dA. 

.J1 (gSod.I°') -( _a, g&c)uoc+ f SocJ U°'U J 
dA. dA. 

~ - 9&cx Jmi'uoc + f&t' uocuP dA. • d). 

~ - g&cx.Jul!t.Jcx + r&c~ uocuP 

Geooesic EQuation 

change dummy indices (,µ~oc) 

product rule 

chain rule 

= ~ - [g&t;J + rJ1 ocJ gsµ+ rPsp Q«µ}uOCU P + f&cxJ uocuP semicolon rule 
dA. for tensors 

= Ws - rr&cx~ + r cxo- f&cxJluocu' 
dA. 

= ~ - foc~suocuP 
dA. 

gu_3 r uOll • , dA. = ocJ3 ~ u 3-component by above rule 

=rccxJJ3uocuB 

= 1I2 9ocJ,3 uocu~ 

= 0 

switch dummy indices and symmetrize 

symmetric part of r. from definition 

=> u3 = constant 
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Appendix B: Properties of F(p) 

The function F(p) is defined above as: 

F(p)= exp( tpfl + ~2+ ~3+ ... J. 

The derivative is given by: 

F'(p)= F(p) [ (~) ( ClfFO + ~1 + Uffl2+ ... ) ] 

= F(p) ( (~) (-dpJ ( ClfF1 + ~2+ ¥3+ ... ) ] 

= F(p) [ c---1-J c-1 • t • C¥1 • '1)'P)2. ~3· ... J] PIOl5 1. 2. 3. 

= F(p) [ (pfnpJ (-1 + exp(.lnp))] 

F'(p)= F(p) ( li~p] 

It is easily seen that any interesting behavior in F(p) or F'(p) will be at 

p=O or p=t. From the definition of F(p) it is seen that F(l) = 1, and the 

derivative is given in the limit: 

F'( 1 )= ~~ F(p) ( /in~] 

= ~~ p~~ 
= lim 1 
~ l ...... 1 +--oo:-n-p 

F'(l)=I 

by L'Hopital's Rule 

Evaluating F(O) is a little trickier since it is unclear from the definition 

how the function behaves in this limit. First we must notice how F(p) 

fits into the definition of r*. 

r" = -M in I in [L] F [L) J · re re 

Sirce r" is defined as an integral from O tor, we know that r*=O when 

r=O. This gives us: 
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o = ~ -M .ln 1 tn(p)F(p) I • or. 

= ~ ! .tn(p)F(p) ! . 
Since in(O) = -oo, in order for this quantity to remain finite we must have: 

F(O)=O 

And we can easily calculate F'(O): 

F'(O)= ~'-g F(p) [ flKp] 
F'(O)= 0. since 1 im p.Q.np = 1 

~o 

The fol lowing graph was evaluated using the approximation: 

F(p)~ exp(~+ ~2+ ~3 + ~4+ ~s). 

F(p)vs. p 

14 

12 

10 

8 
F(p) 

6 
/ 

" 
2 

0 
0 2 3 4 5 s 

p 

(Calculating F"(p) reveals points or inflection at p= I and p~.3. and these 

points can be observed as tw ists In the graph.) 

51 



• 
Bibliography 

M. Alpert, General Relativity in Flatland. (Astrophysics undergraduate 
Thesis: Princeton University, t 982). 

s. Deser. R. Jackiw, ane1 G. t'Hooft, Ann. Phys. 152, 220 (1984) 

S. Giddings, J. Abbot, and K. Kuehar, G.R.G. 16, 751 ( 1984). 

J. A. Gott Ill and M. Alpert, G.R.G. 16, 243 ( 1984). 

T. Kaluza, Sitzungsberichte, Preussische Akadamie der Wissenschaften, 
966 ( 1921). 

o. Klein, z. Phys., 37, 895 (1926). 

L.D. Landau and E.M. Lifshitz. The Classical Theory of Fieldsl (Addison 
Wesley: Reading, MA 1962). 

A.P. Lightman, W.H. Press. R.H. Price, and S.A. Teukolosl<y, Problem Book 
in Re/at ivity and Gravit at ion. (Princeton University Press: 

Princeton NJ, 1979). 

C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation. (W.H. Freeman: 
San Francisco, 1973). 

S. Weinberg, Gravitation and Cosmology. (Wiley and Sons: New York, 
1972). 

52 


	Scanned from a Xerox Multifunction Printer
	Scanned from a Xerox Multifunction Printer-1
	Scanned from a Xerox Multifunction Printer-2

