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Basics

• Most important auditory cues are acoustically
non-trivial

• e.g. speech, speaker ID, emotional content,
pitch, timbre, sound location, and many, many others

• Enormous parallel and serial neural processing in
multiple stages from auditory nerve to cortex

• Neural code is essentially unknown for almost all
auditory features

• Especially in cortex

• Much progress in coding near periphery, especially
coding of sound location



(oversimplified)
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Motivation

• The Quest

Teasing out “function” of Primary Auditory Cortex (AI)

which sounds/features evoke responses?

how are they encoded into spike trains?

• Broadband and dynamic sounds

• Evoke strong, sustained, dynamic responses in AI

• Many natural sounds, e.g. speech, backgrounds

• Reasonable quest: Quantitative measure of how spikes
   encode sound features

• Quantitative descriptor (and predictor)

• Qualitative descriptor/Visual tool

 ≈ { 



 The Path

• Compromise from quantitative necessity

• Restrict broadband and dynamic sounds to

mathematically simple subset:

• Noise—strongly modulated in spectrum and time

• not a severe compromise

• Spectro-Temporal Receptive Field (STRF) succeeds:

• Quantitative descriptor (and predictor)

• Qualitative descriptor/Visual Tool

• Bonus

• Constraints on Neural Connectivity



Sound Features
• Spectro-Temporal Features of Any Sound

• Spectral content of sound as a function of time.

Which spectral frequency bands have enhanced power?
Which spectral frequency bands have diminished power?
How do these change as a function of time?
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“Come home right away.”

Power at 950 Hz

• log f ≈ linear cochlear distance



Response to Pure Tones
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• Pink Noise = flat power density in octaves (log f)
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in Fourier Space
Ω

-0.4 cyc/oct

w4 Hz–4 Hz

0.4 cyc/oct The Fourier transform
of a single moving
sinusoid has support
only on a single point
(and its complex
conjugate).

∫ [.] exp(±2πjΩx±2πjwt)

Single Moving Ripple

in Spectro-Temporal Space
(Spectrogram)

S(t,x)= sin(2πwt + 2πΩx + φ)

x = log2(f / f0)
w = ripple velocity,

e.g. 4 Hz = 4 cycles/s
Ω = ripple density,

e.g. 0.4 cycles/octave
= 2 cycles/5 octaves

c.f. visual
contrast gratings
 

Simplest Dynamic
Stimulus Used
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Spike Train Measurements

22
0/

38
a0

6

70 dBRipple Frequency (cyc/oct) Ripple Velocity is 8 HzA

0

20

40 0 cyc/oct

-0.2 cyc/oct
0

20

40

0

20
0.2 cyc/oct

0

20

40
0.4 cyc/oct

0 25 50 75 100 125
Time (ms)

B

S
pi

ke
 c

ou
nt

s

0 25 50 75 100 125
Time (ms)

0

20

40

-1.6 -0.8 0 0.8 1.6−16 π
−8 π

0
8 π

16 π

Ripple Frequency (cyc/oct)

Transfer Function Phase

C Transfer Function Amplitude

Spike events in (A) are turned into period histograms in (B).
The amplitudes and phases give the transfer function in (C).



Spectro-Temporal Response Field (STRF)
x 

=
 lo

g 
f

t

Spectro-Temporal
Response Function
of the same neuron

21
2/

11
a

2 Dimensional
Transfer Function

• Complex conjugate
symmetric

• Spectral range:
~ 0 — ~ 2 cycle/octave

• Temporal range:
~ 2 — ~ 20 Hz

2 Dimensional
Fourier Transform

2 Dimensional Inverse
Fourier Transform

∫ [.] exp(±2πjΩx±2πjwt)

w

21
2/

11
a

ripple velocity (Hz)

rip
pl

e 
fr

eq
ue

nc
y 

(c
yc

le
s/

oc
ta

ve
)

ΩTF

STRF



• C(τ, x) contains cross terms
• Cross terms have random phase and can be attenuated

by averaging over multiple, random-phase stimuli Sj

Snoise(t,x) =Σj Σk sin(2πwjt + 2πΩkx + φj,k)
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Spectro-Temporal Noise

To speed up the characterization of a cell’s response, we use
combinations of ripples of all velocities w and densities Ω, with
random phases. 

Spectro-Temporal
generalization of
white noise
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• Cross terms give noisy estimates without many random-phase stimuli



STORC(t,x) =Σj  sin(2πwjt + 2πΩkx + φj,k)
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• Multiple stimuli are still needed to present a complete set of ripples.
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Stimulus No. 8
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Interpreting STRFs

STRF region Stimulus Power Spike rate contribution
Excitatory Enhanced Faster
Inhibitory Enhanced Slower
Excitatory Diminished Slower
Inhibitory Diminished Faster (!)

Stimulus Effect on Rate
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receptive field  
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The STRF is a
simple product of a
single spectral
response function
with a single
temporal response
function.

Full Separability

STRF(t,x) = f(t) g(x)

TF(w,Ω) = F(w) G(Ω)

f(t)

F(w)

g(x)

G(Ω)

Therefore the TF is
also a simple product
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The STRF is not separable,
but each quadrant of the
transfer function is, i.e.,
there are different spectral
and temporal responses for
upwards and downwards
frequency modulation.
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Measuring Separability with SVD

• Singular Value Decomposition (SVD) can be used
to estimate the separability of a Transfer Function
(possibly corrupted by noise).  It decomposes the
Transfer Function into a sum of Quadrant Separable
Transfer Functions, ordered by their power.

• Large jumps in the singular values separate signal
from noise (& straddle bootstrap estimate of noise).
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Separability Examples
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Fully
Separable

Input

Fully
Separable

(displaced)
Input

Sum of two
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Separability Example
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Measure of Separability

• SVD supplies a natural measure of separability, αSVD

• αSVD ≈ 0 is fully separable

• αSVD > 0.3 is strongly inseparable 
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0

αd = (P1 - P2)/(P1 + P2)

P1 = (Power in quadrant 1) = (λ1)2

P2 = (Power in quadrant 2) = (λ2)2 

Symmetry by Power 

• αd: Power asymmetry breaks full separability, producing quadrant
separability

• αd   ≈  0 is symmetric in power

• |αd | > 0.3 is quite asymmetric in power—strongly inseparable 
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Spectral Symmetry 
• αs: Asymmetry between spectral cross-sections Gi(Ω):

• αs  ≈  0   is spectrally symmetric

• αs  > 0.3 is spectrally asymmetric—strongly inseparable 
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Temporal Symmetry 
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(complex) correlation between
F1(w) and F2*(-w) 

• αt: Asymmetry between temporal cross-sections Fi(w):

• αt  ≈  0   is temporally symmetric

• αt  > 0.3 is temporally asymmetric—strongly inseparable 

Distribution is strongly skewed
toward temporal symmetry.

Example STRF Population Statistics Contribution to αSVD
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AI

fully
separable

fully
separable Not Quadrant Separable

Input to AI  =
Medial Geniculate Body AI

fully
separable

fully
separable

Quadrant Separable

same temporal function

but lagged

Neural Connectivity Constraints

Input to AI  =
Medial Geniculate Body

temporal function

unrelated



Summary
• The function of AI
To encode spectro-temporal features of sounds

spectrally: to ~1 cycles/octave
temporally: ~2 to  ~20 Hz (in ferret)

plus encoding other sound features not addressed here

• Spectro-Temporal Response Field (STRF)
• Descriptor of response to broadband dynamic stimuli
• Predictor of spike train for stimuli of dynamic,

spectral modulations of noise
    • STRFs agree despite measurement method
    • Linear processing conveys most of the information
• Visual Tool conveys spectro-temporal regions of

excitation and inhibition

• Constraints of Quadrant Separability
• Limits possible network dynamics
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• Preliminary results indicate that the non-linear predictions fit the responses
more accurately than the linear predictions, although the differences
between the two are typically subtle.

Non-Linearity—Predictions
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Spectro-Temporal Rate-Level Functions

Rate-level functions change with τ and x.



3rd Order Regression Curve

Mean Spike Rate
STRF Estimate
3rd Order Regression with Inverse-Repeat

Measured rate-level function at τ  and x
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τ = 16 ms, x = 3.80 kHz

Example 2: Cell 226/20a06
τ = 20 ms, x = 1.15 kHz

• The value of the STRF at each point (τ, x) is the slope of a linear rate-
level function:  Rτ,x(t) =[STRF(τ, x)] ⋅ S(t-τ, x) .

• Polynomial rate-level curves measured at every (τ, x) improve the
description.  These are potentially non-linear functions.

 

• Using cubic polynomials, we have shown that either the non-
linearities are absent, or they are dominantly second order.

• Subtraction of the response to the inverted envelope gives a nearly
linear polynomial fit.  This would be expected, for example, from a
purely even order (e.g., rectifying non-linearity).

Non-Linearity—Theory

Sj(t, x) R(t)

x

τ

Normalized Stimulus Level




