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Basics

e Most important auditory cues are acoustically
non-trivial

* e.g. speech, speaker ID, emotional content,
pitch, timbre, sound location, and many, many other

 Enormous parallel and serial neural processing In
multiple stagesfrom auditory nerve to cortex

* Neural code is essentially unknowmor almost all
auditory features

» Especially in cortex

* Much progress in coding near periphery, especially
coding of sound location
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Auditory Pathway

(oversimplified)
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Motivation

e The Quest
Teasing out “function” of Primary Auditory Cortex (Al)
which sounds/features evoke responses?

:{ how are they encoded into spike trains?

* Broadband and dynamic sounds
* Evoke strong, sustained, dynamic responses in Al
 Many natural sounds, e.g. speech, backgrounds

» Reasonable questQuantitative measure of how spikes
encode sound features

» Quantitative descriptor (and predictor)
» Qualitative descriptor/Visual tool
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The Path

« Compromise from gquantitative necessity
» Restrict broadband and dynamic sounds to
mathematically simple subset:
* Noise—strongly modulated ispectrum andtime

* NOt a severe compromise

» Spectro-Temporal Receptive Field (STRFsucceeds:
» Quantitative descriptor (and predictor)
» Qualitative descriptor/Visual Tool

e Bonus

e Constraints on Neural Connectivity
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Sound Features
e Spectro-Temporal Features of Any Sound

e Spectral content of sound as a function of time.

Which spectral frequency bands have enhanced power?
Which spectral frequency bands have diminished power?
How do these change as a function of time?

“Come home right away.”
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Response to Pure Tones
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. _ S mulus Construction
* Pink Noise = flat power density in octaves (fdg

not white

« Unmodulatednoise(flat) » Spectrally modulated noi
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Stimulus Construction

» Spectro-Temporally modulated noise
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Single Moving Ripple

Simplest Dynamic S(t,X)= sin(2wt + 2nQx + ¢)
Stimulus Used
X = logy(f / fp)
_ w = ripple velocity,
In Spectro-Temporal Space e.g. 4 Hz = 4 cycles/s

(Spectrogram Q = ripple density,
e.g. 0.4 cycles/octave

8 "'H = 2 cycles/5 octaves
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| | sinusoid has support
> . .
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(and its complex
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Multiple Individual Ripples

S(tX)= sin(2wt + 2mQx + @) w = ripple velocity (Hz)
¥ = log.(f /T.) Q = ripple density (cyc/oc})
Q (cycle‘s/octave)
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Spike Train Measurements

Ripple Frequency (cyc/oct)
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Spectro-Temporal Response Field (STRF)

2 Dimensional
Transfer Function

« Complex conjugate
symmetric

« Spectral range:
~ 0 — ~ 2 cycle/octav

ripple frequency (cycles/octave)

H e Temporal range:
~2—~20Hz
ripple vel?city (Hz)
2 Dimensional Inverse
Fourier Transform
J [] exp(+21 Qx+27wt)
2 Dimensional
Fourier Transform SpeCtrO-Tem pOraI
A STRF Response Function
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Spectro-Temporal Noise

To speed up the characterization of a cell’'s response, we u
combinations of ripples d&ll velocitiesw and densities?, with
random phases.
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St, YR(t-T)dt = %‘ ZS(tk-T, X)

= Spike-Triggered
Average

» C(1, X) contains cross terms

» Cross terms have random phase and can be attenuated
by averaging over multiple, random-phase stiruli

m

1
STRE.(T, X) = C(-T, X
eskT, X) ﬁwjzl i(-T, X)

» Cross terms give noisy estimates without many random-phase sti

Center for Auditory Institute for Systems Research

and Acoustic Research University of Maryland



Temporally Orthogonal Ripple
Combinations (TORCs)

To eliminate interference from cross-terms, we use specific
combinations of ripples with differing velocitiasand
random phases.

STORC(LX) :Zj sin(Zrwt + 2rQx + @)

x (octaves) .

(=)
N
al

E T (ms)

 Stimuli have unique instances of each ripple velocity.
« Multiple stimuli are still needed to present a complete set of rippl

1 T 1
- ion€ = - - t-T, X
Cross-CorrelationC(t, X) = i J'O St YR = o ZS( T X)
= Spike-Triggered
Average
» C(1, X) contains no cross terms

m

STRE(T, X) = jZlcj(-r, X)
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Spike Averaged Data

Stimulus No. 8 Response No. 8 (Normalized PSTH)
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Interpreting STRFs

STRF Stlmulus
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STRF from TORCs  STRF from single ripples

STRFs Compared

STRF from Spectr
Temporal Noise

S —

226/20a

0 t (ms)

Center for Auditory
and Acoustic Research

Institute for Systems Research
University of Maryland



Full Separability

x = log[f/f] STRKt,X) :
A AT The STRF is a
Hz| simple product of a
single spectral
L response function
o with a single
g(x) > temporal response
D 10 function.
> Hz 226/20a.a1
receptive field ° 250
f(t STRRt,X) = f(t) g(X)
7 = > 1
\/\fn\pﬁse res\pf)ﬁée
| |
FOM (M | g0
| TF(w,Q)| 1 1
1.8 cyc/oct Q1
Fiw) | G(Q)

THw,Q) = F(w) G(Q)

Therefore the TF is
also a simple product
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Quadrant Separability

x = log[f/f] STRKt,X) _

AT The STRF is not separable,

Q kHz but each quadrant of the

> transfer function is, i.e.,

there are different spectr
< - - and temporal responses for

upwards and downwards

6i(x) <2m A frequency modulation.
Hz

0 250:
Q1 | ms
— Q2 A i(®

R =2

()1 i) | 9
I-I_F(Wl’.% )clyc/oct Q1 1 1

Fw) | G(Q)

(W) G(Q) w>0,Q>0
(W) G,(Q) w<0,Q>0

for Q> 0: T(w,Q) =T (-w,-Q)
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Measuring Separability with SVD

* Singular Value Decomposition (SVD) can be used
to estimate the separability of a Transfer Function
(possibly corrupted by noise). It decomposes the
Transfer Function into a sum of Quadrant Separalle
Transfer Functions, ordered by their power.

* | arge jumps in the singular values separate signal
from noise (& straddle bootstrap estimate of noise).

Raw Estlmate 1st Quadrant-separable o
Component

E'(w) G(Q) ?(w) + *(w)
T(w,Q
y E(w) G(Q) + ’(w) GZ(Q) + WG?’Q + ...
- — (& . T + +
Al L]

% 0.5 Q2 05 Ql

S o025 025 |
5 ) _I _ bootstrap noise
£ 0 0

1 2 3 45 6 7 8,910 1 2 3 4 5 6 7 8 910

/.\ r\ n Singular Value Number
U\
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Separability Examples

Fully

Separable |

o F{ )
Quadrant

Separable |
: :"I- | F{ )

Velocityl

Selective |
is| ﬁ' | F{ ]

Inseparable | =

Quadrant

separability I
iIncompatible

with velocity
selectivity.

Simulation

r\/\} R
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Separability Counterexample

Fully
SeparabIeH |
Input] | F{ )

Fully [
Separable
(displaced)##
Input|

Sum of twg
Fully
Separablets
Inputs is
Inseparable

Naive sum of two fully separable
iInput STRFs Is inseparable.

2! Simulation
\/ \./?
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Separability Example

Fully /—
Separable |
Input ™ Tt N F{ )]

Same Fully
Separable

but Lagged
(& shifted

spectrally)
Input

Sum O(I'L |
Non-Lagged_J.
and Lagged

Inputs is
Separable

Sum of two fully separable inpu

STRFs Is separable If the tempc
processing Is In quadrature.

Simulatio
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Measure of Separabillity

* SVD supplies a natural measure of separabuity;

® Os,p = 0 Is fully separable

® O.,p > 0.3 Is strongly inseparable

Frequency

O, = 0.06

218/15b06.m1

218/15b04.m2
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Symmetry by Power

* o, Power asymmetry breaks full separability, producing quadrant
separability

Og= (P - B)/(P.+ P)

P, = (Power in quadrant 1) {)2
P, = (Power in quadrant 2) 22

°* a, = 0Issymmetric in power

* lo,| > 0.3 Is quite asymmetric in power—strongly inseparable

Example STRF Population Statistics 05 Contribution toag,,

ag=.79

> 1 20 Od Usvp

C

g .y |

Z - 1 10

LL
229/11a05.m1 | " _
| 0 .51 correlation

0 0.5 1

.. .... L]
Time -1
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Spectral Symmetry

* 0. Asymmetry between spectral cross-sectiGie).

where the quantity inside the
zQ>oGl G,(Q) big absolute value bars is th
G(Q | G,(Q | (complex) correlation betwe
00 G1(Q) andG2(Q)

* o, = 0 Isspectrally symmetric

* o, > 0.3 is spectrally asymmetric—strongly inseparable

Example STRF Population Statistics Contribution toag,
> | O =.65 | 20 | o
c ‘.
o e

o | . :
L

e 223/12a06.m1 | :‘.

R oL .75 correlation

Time 0.5
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Temporal Symmetry
* a,. Asymmetry between temporal cross-sectibii®):

where the gquantity inside the
a =1- zwo F(w) F,(-w) ‘ big absolute value bars is the
e I lation bet
szo“:l (W)|2 3 (_W)|2 (complex) correlation between

F1(w) andF2” (-w)
°*a, = 0 Istemporally symmetric

* a, > 0.3 is temporally asymmetric—strongly inseparable

Example STRF Population Statistics 0 Contribution toa,,

e a,=.30
-
.

Osvp | .

Frequency

v

o .66 correlatior
1 0 05 o 1

Distribution Is strongly skewef
toward temporal symmetry.
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Neural Connectivity Constraints

Input to Al =
Medial Geniculate Body

Al

Not Quadrant Separahle

Input to Al =
Medial Geniculate Body Al

Quadrant Separable
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Summary

e The function of Al
To encode spectro-temporal features of sounds
spectrally: to ~1 cycles/octave

temporally: ~2 to ~20 Hz (in ferret)

plus encoding other sound features not addressed hel

e Spectro-Temporal Response Field (STRF)
» Descriptor of response to broadband dynamic sti
 Predictor of spike train for stimuli of dynamic,
spectral modulations of noise

 STRFs agree despite measurement method

* Linear processing conveys most of the informa
* Visual Tool conveys spectro-temporal regions of

excitation and inhibition

« Constraints of Quadrant Separability
 Limits possible network dynamics
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Non-Linearity—Predictions

 Preliminary results indicate that the non-linear predictions fit the resp@ns
more accurately than the linear predictions, although the differences
between the two are typically subtle.

12
O

8 Hz Stimulus linear impulse response

o tms) 0 0 t(ms) 20 20|
oM /NN N LN
' uadratic impulse response . — Quadrati¢
Square of Stimulus (16 Hz) qua IMPUE P 20 | | | _nga;m\
0 t(ms) 250

A

0 t (ms) 250 0 t (ms) 250

- I%(t) Linear
—R(t) Linear +

Quadratic
O R(t)

N
o
T

(spikes/sec)
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Spectro-Temporal Rate-Level Functions

Rate-level functions change withandx.

Spike Rate
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Non-Linearity—Theory

» The value of the STRF at each pomty) is the slope of a linear rate-
level function: Rr,x(t) =[STRF(, X)] (H-1, X) .

» Polynomial rate-level curves measured at every)(improve the
description. These are potentially non-linear functions.

IECI ¢
Sy [

Example 1 Cell :
351 228/08al0

. T=16 ms, x = 3.80 kHz

1 octave
¥

______________________________________________________

©1p26/20a !

: Example 2 Cell 226/20a0
1=20ms, x = 1.15 kHz

16 ms 25ms

08 04 0 04 08 08 04 0 04 _ os
Normalized Stimulus Level

- = = . Measured rate-level function atandx

3rd Order Regression Curve

3rd Order Regression with Inverse-Ref

—mrmm STRF Estimate
_________ Mean Spike Rate

 Using cubic polynomials, we have shown that either the non-
linearities are absent, or they are dominantly second order.

» Subtraction of the response to the inverted envelope gives a nearl
linear polynomial fit. This would be expected, for example, from a

purely even order (e.g., rectifying non-linearity).
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