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Outline

Measuring Brain Responses with Magnetism

Linear Shift-Invariant Kernels

Motivation: neural response as convolution with stimulus
Examples: neural response as convolution with stimulus
Example: objective measure of intelligibility
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Magnetoencephalography (MEG
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*Direct electrophysiological measurement *Measures spatially synchronized
*not hemodynamic cortical activity
real-time *Fine temporal resolution (~ 1 ms)

*No unique solution for distributed source *Moderate spatial resolution (~ 1 cm)



Magnetoencephalography (MEG)

Non-invasive, passive, silent neural
recordings from cortex

Simultaneous whole-head
recording (~200 sensors)

Sensitivity
e high: ~100 fT (10-13 Tesla)
 low: ~10% - ~106 neurons

Temporal resolution: ~| ms

Spatial resolution
* coarse: ~| cm
* ambiguous




Magnetoencephalography (MEG)

Non-invasive, passive, silent neural
recordings from cortex

Simultaneous whole-head
recording (~200 sensors)

Sensitivity
e high: ~100 fT (10-13 Tesla)
 low: ~10% - ~106 neurons

Temporal resolution: ~| ms

Spatial resolution
* coarse: ~| cm
* ambiguous

http://www.darkroastedblend.com/2007/05/mystery-devices-issue-2.html




Magnetoencephalography (MEG)

Non-invasive, passive, silent neural
recordings from cortex

Simultaneous whole-head
recording (~200 sensors)

Sensitivity
e high: ~100 fT (10-13 Tesla)
 low: ~10% - ~106 neurons

Temporal resolution: ~| ms

Spatial resolution
* coarse: ~| cm
* ambiguous




Neural Source Problem

|
-




Neural Source Problem

VXB=—]
V - B

|
-

’B — %‘J % M brain dipole

N magnetic

fileld sensor current sources

measurements NxM UNKNOWN
“Lead Field”

Matrix



Neural Source Problem

/B — %‘J\

N magnetic M brain dipole
fileld sensor current sources
measurements NxM UNKNOWN

“Lead Field”
Matrix Das et al., Neurolmage (2020)



Outline

e Linear Shift-Invariant Kernels



Linear Shift Invariant Kernel
convolution/shifts in time ~ Y(f) = [h(t — x(t)dt’

output kernel iInput
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Linear Shift Invariant Kernel
convolution/shifts in time ~ Y(f) = [h(t — x(t)dt’

output kernel iINnput

Y(f) = Fy0)) = Jy(t)e‘iz”f dt

Fourier Transforms: H(f)=% f{h(t)} = Jh(t)e_iz”f dt

X(f) = FAx(0)} = Jx(t)e‘iZ”fdt

no shifting of frequencies Y(f) — H(f) X(f)



Linear Systems Theory

r(t) = Jh(t — 1)s(t)dt’  convolution = smearing in time



Linear Systems Theory
r(t) = Jh(t — 1)s(t)dt’  convolution = smearing in time
R(f) = FAr(} = Jr(t)e_iZ”fdt
Fourier Transforms:  H(f) = F{h(1)} = Jh(t)e_iz”fdt

S(f) = Fs0} = Js(t)e‘iz”f dt

R(f) =M (f) S(f) no shifting of frequencies

no addition of new frequencies
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* Motivation: neural response as convolution with stimulus
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Linear Systems Theory

R(f) =H (f) S(f) no shifting of frequencies

no addition of new frequencies

r(t) = Jh(t — 1)s(t)dt’  convolution = smearing in time
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 Examples: neural response as convolution with stimulus



Neural Representations of Speech

 Measure time-locked responses to temporal pattern of speech features (in humans)
 Any speech feature of interest: acoustic envelope, lexical, pitch, semantic, etc.

* Infer spatio-temporal neural origins of neural responses

his schoolhouse wasa low building of one large room rudely constructed of logs
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Neural Representations of Speech

 Measure time-locked responses to temporal pattern of speech features (in humans)
 Any speech feature of interest: acoustic envelope, lexical, pitch, semantic, etc.

* Infer spatio-temporal neural origins of neural responses
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TRF Model Estimation & Fit

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF
to produce the response from the stimulus:

Resp.

Stim.



TRF Model Estimation & Fit

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF
to produce the response from the stimulus:

Resp.

Stim.

“LW Estimated TRF

“Actual response

Resp.

Predicted response (Stimulus = TRF)

Lalor & Foxe (2010) Neural Responses to Uninterrupted Natural Speech ... Eur J Neurosci
Ding & Simon (2012) Neural Coding of Continuous Speech in Auditory Cortex ... , J Neurophys



Neural Representations: Encoding
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Neural Representations: Encoding
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Example: Representation of Speech Envelope

Temporal Response Functions

20

i
O

-
o

-
l
1

4172
Center

I frequency
165

Source current (normalized)
O

il
o )

0O 100 200 300 400
Time (ms)

Brodbeck et al. (2020) Neural Speech Restoration at the Cocktail Party ..., PLoS Biol



Neural Representations: Selective Attention
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0 T~

Brodbeck et al. (2020) Neural Speech Restoration at the Cocktail Party ..., PLoS Biol 90 100 200 300 400
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Brodbeck et al. (2021) Eelbrain: A Pvthon Toolkit for Time-Continuous Analysis ... , bioRxiv
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Crosse et al. (2016) The Multivariate Temporal Response Function (nTRF) Toolbox ... , Front Hum Neurosci
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Do we...

Word Onsets

» Anticipate word boundaries based on context”

» Infer them later based on consistency”?

()

catalogue Inner | eye |
%\/ P VI
cat = log _i n >| a 4 > | ST P
cattle \ login //\ \ library

“The catalogue in a library”

(Norris & McQueen, 2008)



Cortical Representations Across Cortex

Post-Auditory Cortex
Semantic
Auditory Cortex Lexical Processing
Higher Order Processing semantic composition
Auditory word onsets
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Outline

 Example: objective measure of intelligibility



Neural Markers of Speech Intelligibility

* Neural correlate of understanding/intelligibility®?
o very high clinical potential

o most intelligibility manipulations alter acoustics,
but not all

o can use “priming” to alter intelligibility
o corresponding neural response?

o good candidates: linguistic predictors, e.g.,
word onsets



Intelligibility Experimental Design

 Manipulate intelligibility but
keep acoustics unchanged

- Speech acoustics:
three-band noise-
vocoded speech

- Intelligibility manipulated
via priming

* Hypothesized intelligibility
measure(s)
- word boundaries

Karunathilake et al. in preparation
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Intelligibility Experimental Design

 Manipulate intelligibility but
keep acoustics unchanged

- Speech acoustics:
three-band noise-
vocoded speech

- Intelligibility manipulated
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“Slice an apple through at its equator,
and you will find five small chambers
arrayed in a perfectly symmetrical

starburst—a pentagram.”
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Behavioral Results: Clarity

4
Clarity rating increases from = o
PRE condition L
to POST condition 2>
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Intelligibility Neural Results

« Word onset TRF shows both 2001 a ate Post
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Intelligibility Neural Results

e Word onset TRF shows both

early (+) and late (-) processing stages
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Intelligibility Neural Results

e Word onset TRF shows both

early (+) and late (-) processing stages

 Response increases Pre—Post

- Only in left hemisphere
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Intelligibility Neural Results

n Pre

 Word onset TRF shows both e ate Post

early (+) and late (-) processing stages Word O”S?t TRFL % Clean

single subject 0.

 Response increases Pre—Post early -

- Only in left hemisphere 5 200 400 600

: early t (ms)
- Late processing stage shows -
larger change than early e
late

 Response to Word Onset: 1> left

Objective measure of intelligibility | ........

- Acoustic responses: no change 05 . | |



Summary

 Measuring Brain Responses with Magnetism

e Linear Shift-Invariant Kernels

* Motivation: neural response as convolution with stimulus
 Examples: neural response as convolution with stimulus

Example: objective measure of intelligibility

|

VXB=—J r(r) = [h(t — 1)s(t)dt’

r(t) = ijhk(t — 1) (1)dt’ + Zthj(t — t’)sj(t’)dt’

acoustic linguistic



thank you

These slides
available at:
ter.ps/simonpubs

Mastodon: @jzsimon@mas. to
http://www.isr.umd.edu/Labs/CSSL/simonlab
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