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CNL Laboratory

The aim of the new Cognitive Neuroscience of
Language (CNL) Laboratory at the University of
Maryland is to bridge theoretical and computational
models of human language and the brain-level
mechanisms that support language. The researchers
in the CNL Lab pursue an integrated approach to this
problem, combining the study of linguistics,
cognitive neuroscience, language acquisition and
psycholinguistics, genetic disorders and
computational modeling. The work in the CNL Lab
covers many areas of language, ranging from studies
of auditory and phonetic encoding, through
morphology and syntax, to studies of the
semantics/pragmatics interface.

The research in the CNL Lab currently involves
more than 30 faculty, staff, graduate and
undergraduate students and postdoctoral researchers.

The CNL Lab opened in 1999, and underwent
significant expansion in 2000-2001. The lab was
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and Humanities and a series of program
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from the National Science Foundation, the National
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Science Program, and the Australian Research
Council.
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Neural Representations of Speech

For instance, even though older adults frequently com-
plain of speech comprehension difficulty, cortical enve-
lope tracking actually increases with advancing age
[16,17!,18]. An early observation was that speech tracking
strength may correspond more to the perceived speech
than simply reflecting the bottom up acoustic input. In
responses to two talkers, the attended talker is often
tracked more reliably than the ignored talker [19], and
this modulation is robust enough to allow for detecting
changes in the focus of attention in relatively short seg-
ments of data [20,21]. Here, envelope tracking thus
measures how well the to-be attended speech is repre-
sented despite the fact that it is different from the actual acoustic
input signal. Similarly, tracking even of clean speech is
increased during periods in which attentional focus is high
[22]. Such trial-by-trial variation in clean speech tracking
has also been shown to reflect task performance, with
better memory for words that occurred in sentences with
higher speech tracking [23].

This raises the possibility that envelope tracking may
reflect a sort of cleaned-up and attended-to representa-
tion of the acoustic input, which might form the basis for
comprehension. For speech presented with different
kinds of background noise, increased tracking of the
attended envelope is associated with better speech
understanding even after controlling for the objective
background noise level [17!]. Consistent with a strong
top-down influence, tracking of the attended speech can
actually be higher for speech in noise than for clean

speech [24] and, for a well-known stimulus, tracking
can even persist during short gaps in which the stimulus
is replaced with pure noise [25]. In addition to this
attentional enhancement, tracking of attended speech
in noise differs qualitatively depending on whether the
language is known to the listener [10,26], suggesting that
speech tracking includes a language-specific component
in addition to acoustic processing.

Envelope tracking thus likely reflects an interaction of
the bottom-up input to the auditory cortex with resource-
dependent, higher order processes. This is demonstrated
by varying the amount of cognitive resources devoted to
the speech [27]: At high signal to noise ratios (SNRs),
speech tracking is similar, whether participants attend to
the speech, or whether they ignore it and watch a silent
movie instead. At lower SNRs, however, when more
attentional resources would be required to recover the
speech signal, speech tracking decreases much more in
the movie condition. When subjects were playing a video
game, speech tracking was even lower, decreasing even
for clean speech. This suggests that speech tracking even
of clean speech has a resource-dependent component,
with increasing demands for speech in noise.

Components of speech tracking
The results summarized above suggest that, while the
speech envelope is by definition an acoustic property of
speech, considering speech tracking as a measure of basic

26 Physiology of hearing

Figure 1
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Current Opinion in Physiology 

Models for analyzing speech tracking. (a) Stimulus reconstruction (backward model): a decoder is trained to reconstruct the stimulus envelope
from the neural response, and speech tracking is quantified by how well the reconstructed envelope matches the actual envelope. A typical
decoder uses a linear combination of the neural responses in a window following the envelope by 0–500 ms. (b) Temporal response functions
(TRFs) (forward model): a TRF is trained to predict the neural response from the speech envelope, and speech tracking is quantified by how well
the predicted response matches the actual response. A typical TRF uses various delayed versions of the envelope from 0–500 ms. Responses
originating from different brain areas are each characterized by their own TRF.

Current Opinion in Physiology 2020, 18:25–31 www.sciencedirect.com

• Measure time-locked responses to temporal pattern of speech features (in humans)


• Any speech feature of interest: acoustic envelope, lexical, pitch, semantic, etc.


• Infer spatio-temporal neural origins of neural responses
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Semantic reconstruction of continuous 
language from non-invasive brain recordings

Jerry Tang1, Amanda LeBel    2, Shailee Jain    1 & Alexander G. Huth    1,2 

A brain–computer interface that decodes continuous language from 
non-invasive recordings would have many scienti!c and practical 
applications. Currently, however, non-invasive language decoders can 
only identify stimuli from among a small set of words or phrases. Here we 
introduce a non-invasive decoder that reconstructs continuous language 
from cortical semantic representations recorded using functional magnetic 
resonance imaging (fMRI). Given novel brain recordings, this decoder 
generates intelligible word sequences that recover the meaning of perceived 
speech, imagined speech and even silent videos, demonstrating that a 
single decoder can be applied to a range of tasks. We tested the decoder 
across cortex and found that continuous language can be separately 
decoded from multiple regions. As brain–computer interfaces should 
respect mental privacy, we tested whether successful decoding requires 
subject cooperation and found that subject cooperation is required both 
to train and to apply the decoder. Our !ndings demonstrate the viability of 
non-invasive language brain–computer interfaces.

Previous brain–computer interfaces have demonstrated that speech 
articulation1 and other signals2 can be decoded from intracranial 
recordings to restore communication to people who have lost the ability 
to speak3,4. Although effective, these decoders require invasive neuro-
surgery, making them unsuitable for most other uses. Language decod-
ers that use non-invasive recordings could be more widely adopted and 
have the potential to be used for both restorative and augmentative 
applications. Non-invasive brain recordings can capture many kinds of 
linguistic information5–8, but previous attempts to decode this informa-
tion have been limited to identifying one output from among a small 
set of possibilities9–12, leaving it unclear whether current non-invasive 
recordings have the spatial and temporal resolution required to decode 
continuous language.

Here we introduce a decoder that takes non-invasive brain record-
ings made using functional magnetic resonance imaging (fMRI) and 
reconstructs perceived or imagined stimuli using continuous natural 
language. To accomplish this, we needed to overcome one major obsta-
cle: the low temporal resolution of fMRI. Although fMRI has excellent 
spatial specificity, the blood-oxygen-level-dependent (BOLD) signal 
that it measures is notoriously slow—an impulse of neural activity 

causes BOLD to rise and fall over approximately 10 s (ref. 13). For natu-
rally spoken English (over two words per second), this means that each 
brain image can be affected by over 20 words. Decoding continuous 
language thus requires solving an ill-posed inverse problem, as there 
are many more words to decode than brain images. Our decoder accom-
plishes this by generating candidate word sequences, scoring the 
likelihood that each candidate evoked the recorded brain responses 
and then selecting the best candidate.

To compare word sequences to a subject’s brain responses, we 
used an encoding model5 that predicts how the subject’s brain responds 
to natural language. We recorded brain responses while the subject 
listened to 16 h of naturally spoken narrative stories, yielding over five 
times more data than the typical language fMRI experiment. We trained 
the encoding model on this dataset by extracting semantic features that 
capture the meaning of stimulus phrases8,14–17 and using linear regres-
sion to model how the semantic features influence brain responses 
(Fig. 1a). Given any word sequence, the encoding model predicts how 
the subject’s brain would respond when hearing the sequence with 
considerable accuracy (Extended Data Fig. 1). The encoding model can 
then score the likelihood that the word sequence evoked the recorded 
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brain image can be affected by over 20 words. Decoding continuous 
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Neural Representations of Speech

For instance, even though older adults frequently com-
plain of speech comprehension difficulty, cortical enve-
lope tracking actually increases with advancing age
[16,17!,18]. An early observation was that speech tracking
strength may correspond more to the perceived speech
than simply reflecting the bottom up acoustic input. In
responses to two talkers, the attended talker is often
tracked more reliably than the ignored talker [19], and
this modulation is robust enough to allow for detecting
changes in the focus of attention in relatively short seg-
ments of data [20,21]. Here, envelope tracking thus
measures how well the to-be attended speech is repre-
sented despite the fact that it is different from the actual acoustic
input signal. Similarly, tracking even of clean speech is
increased during periods in which attentional focus is high
[22]. Such trial-by-trial variation in clean speech tracking
has also been shown to reflect task performance, with
better memory for words that occurred in sentences with
higher speech tracking [23].

This raises the possibility that envelope tracking may
reflect a sort of cleaned-up and attended-to representa-
tion of the acoustic input, which might form the basis for
comprehension. For speech presented with different
kinds of background noise, increased tracking of the
attended envelope is associated with better speech
understanding even after controlling for the objective
background noise level [17!]. Consistent with a strong
top-down influence, tracking of the attended speech can
actually be higher for speech in noise than for clean

speech [24] and, for a well-known stimulus, tracking
can even persist during short gaps in which the stimulus
is replaced with pure noise [25]. In addition to this
attentional enhancement, tracking of attended speech
in noise differs qualitatively depending on whether the
language is known to the listener [10,26], suggesting that
speech tracking includes a language-specific component
in addition to acoustic processing.

Envelope tracking thus likely reflects an interaction of
the bottom-up input to the auditory cortex with resource-
dependent, higher order processes. This is demonstrated
by varying the amount of cognitive resources devoted to
the speech [27]: At high signal to noise ratios (SNRs),
speech tracking is similar, whether participants attend to
the speech, or whether they ignore it and watch a silent
movie instead. At lower SNRs, however, when more
attentional resources would be required to recover the
speech signal, speech tracking decreases much more in
the movie condition. When subjects were playing a video
game, speech tracking was even lower, decreasing even
for clean speech. This suggests that speech tracking even
of clean speech has a resource-dependent component,
with increasing demands for speech in noise.

Components of speech tracking
The results summarized above suggest that, while the
speech envelope is by definition an acoustic property of
speech, considering speech tracking as a measure of basic
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Models for analyzing speech tracking. (a) Stimulus reconstruction (backward model): a decoder is trained to reconstruct the stimulus envelope
from the neural response, and speech tracking is quantified by how well the reconstructed envelope matches the actual envelope. A typical
decoder uses a linear combination of the neural responses in a window following the envelope by 0–500 ms. (b) Temporal response functions
(TRFs) (forward model): a TRF is trained to predict the neural response from the speech envelope, and speech tracking is quantified by how well
the predicted response matches the actual response. A typical TRF uses various delayed versions of the envelope from 0–500 ms. Responses
originating from different brain areas are each characterized by their own TRF.
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• Measure time-locked responses to temporal pattern of speech features (in humans)


• Any speech feature of interest: acoustic envelope, lexical, pitch, semantic, etc.


• Infer spatio-temporal neural origins of neural responses
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Neural Representations: Encoding
• predicting future neural responses from 

current stimulus features, 

• wide variety of stimulus features

• via Temporal Response Function (TRF)


• typically harder than reconstruction, since 
stimulus dimension ≪ response dimension


• Why bother looking at encoding? It often 
tells us more about the brain

• TRF analogous to evoked response

• peak amplitude ≈ processing measure

• peak latency ≈ source location

• est. source location ≈ source location

Example: MEG Prediction of Voxel Responses

their relevance for stream segregation, as follows [1]. If acoustic elements in different fre-
quency regions are co-modulated over time, they likely stem from the same physical source
[27]. A simultaneous onset in distinct frequency bands thus provides sensory evidence that
these cross-frequency features originate from the same acoustic source and should be pro-
cessed as an auditory object. Accordingly, shared acoustic onsets promote perceptual grouping
of acoustic elements into a single auditory object, such as a complex tone and, vice versa, sepa-
rate onsets lead to perceptual segregation [28,29]. For example, the onset of a vowel is charac-
terized by a shared onset at the fundamental frequency of the voice and its harmonics.
Correspondingly, if the onset of a formant is artificially offset by as little as 80 milliseconds, it
can be perceived as a separate tone rather than as a component of the vowel [30]. This link to
object perception thus makes acoustic onsets particularly relevant cues, which might be repre-
sented distinctly from envelope cues and used to detect the beginning of local auditory objects,
and thus aid segregation of the acoustic input into different, potentially overlapping auditory
objects.

We analyzed human MEG responses to a continuous 2-talker mixture to determine to what
extent the auditory cortex reliably tracks acoustic onset or envelope features of the ignored
speech, above and beyond the attended speech and the mixture. Participants listened to 1-min-
ute-long continuous audiobook segments, spoken by a male or a female speaker. Segments
were presented in 2 conditions: a single talker in quiet (“clean speech”), and a 2-talker mixture,
in which a female and a male speaker were mixed at equal perceptual loudness. MEG responses
were analyzed as additive, linear response to multiple concurrent stimulus features (see Fig 1).
First, cross-validated model comparisons were used to determine which representations

Fig 1. Additive linear response model based on STRFs. (A) MEG responses recorded during stimulus presentation
were source localized with distributed minimum norm current estimates. A single virtual source dipole is shown for
illustration, with its physiologically measured response and the response prediction of a model. Model quality was
assessed by the correlation between the measured and the predicted response. (B) The model’s predicted response is
the sum of tonotopically separate response contributions generated by convolving the stimulus envelope at each
frequency (C) with the estimated TRF of the corresponding frequency (D). TRFs quantify the influence of a predictor
variable on the response at different time lags. The stimulus envelopes at different frequencies can be considered a
collection of parallel predictor variables, as shown here by the gammatone spectrogram (8 spectral bins); the
corresponding TRFs as a group constitute the STRF. Physiologically, the component responses (B) can be thought of as
corresponding to responses in neural subpopulations with different frequency tuning, with MEG recording the sum of
those currents. MEG, magnetoencephalographic; STRF, spectrotemporal response function; TRF, temporal response
function.

https://doi.org/10.1371/journal.pbio.3000883.g001

PLOS BIOLOGY Neural speech restoration at the cocktail party

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000883 October 22, 2020 3 / 22
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illustration, with its physiologically measured response and the response prediction of a model. Model quality was
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the sum of tonotopically separate response contributions generated by convolving the stimulus envelope at each
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variable on the response at different time lags. The stimulus envelopes at different frequencies can be considered a
collection of parallel predictor variables, as shown here by the gammatone spectrogram (8 spectral bins); the
corresponding TRFs as a group constitute the STRF. Physiologically, the component responses (B) can be thought of as
corresponding to responses in neural subpopulations with different frequency tuning, with MEG recording the sum of
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- can the speech representation be cleaned?

significantly improve prediction of the MEG responses. Then, the resultant spectrotemporal
response functions (STRFs) were analyzed to gain insight into the nature of the
representations.

Results and discussion

Auditory cortex represents acoustic onsets

MEG responses to clean speech were predicted from the gammatone spectrogram of the stim-
ulus and, simultaneously, from the spectrogram of acoustic onsets (Fig 2A). Acoustic onsets
were derived from a neural model of auditory edge detection [19]. The 2 predictors were each
binned into 8 frequency bands, such that the MEG responses were predicted from a model of
the acoustic stimulus encompassing 16 time series in total. Each of the 2 predictors was
assessed based on how well (left-out) MEG responses were predicted by the full model, com-
pared with a null model in which the relevant predictor was omitted. Both predictors signifi-
cantly improve predictions (onsets: tmax = 12.00, p 0.001; envelopes: tmax = 9.39, p 0.001),
with an anatomical distribution consistent with sources in HG and STG bilaterally (Fig 2B).
Because this localization agrees with findings from intracranial recordings [8,17], results were
henceforth analyzed in an auditory region of interest (ROI) restricted to these 2 anatomical
landmarks (Fig 2C). When averaging the model fits in this ROI, almost all subjects showed evi-
dence of responses associated with both predictors (Fig 2D).

Fig 2. MEG responses to clean speech. (A) Schematic illustration of the neurally inspired acoustic edge detector model, which was used to generate onset
representations. The signal at each frequency band was passed through multiple parallel pathways with increasing delays, so that an “edge detector” receptive
field could detect changes over time. HWR removed the negative sections to yield onsets only. An excerpt from a gammatone spectrogram (“envelope”) and
the corresponding onset representation are shown for illustration. (B) Regions of significant explanatory power of onset and envelope representations,
determined by comparing the cross-validated model fit from the combined model (envelopes + onsets) to that when omitting the relevant predictor. Results
are consistent with sources in bilateral auditory cortex (p 0.05, corrected for whole brain analysis). (C) ROI used for the analysis of response functions,
including superior temporal gyrus and Heschl’s gyrus. An arrow indicates the average dominant current direction in the ROI (upward current), determined
through the first principal component of response power. (D) Individual subject data corresponding to (B), averaged over the ROI in the LH and RH,
respectively. (E) STRFs corresponding to onset and envelope representations in the ROI; the onset STRF exhibits a clear pair of positive and negative peaks,
while peaks in the envelope STRF are less well-defined. Different color curves reflect the frequency bins, as indicated next to the onset and envelope
spectrograms in panel A. Shaded areas indicate the within-subject standard error (SE) [31]. Regions in which STRFs differ significantly from 0 are marked
with more saturated (less faded) colors (p 0.05, corrected for time/frequency). Data are available in S1 Data. HWR, half-wave rectification; LH, left
hemisphere; MEG, magnetoencephalographic; RH, right hemisphere; ROI, region of interest; SE, standard error; STRF, spectrotemporal response function;
TRF, temporal response function.

https://doi.org/10.1371/journal.pbio.3000883.g002
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through the first principal component of response power. (D) Individual subject data corresponding to (B), averaged over the ROI in the LH and RH,
respectively. (E) STRFs corresponding to onset and envelope representations in the ROI; the onset STRF exhibits a clear pair of positive and negative peaks,
while peaks in the envelope STRF are less well-defined. Different color curves reflect the frequency bins, as indicated next to the onset and envelope
spectrograms in panel A. Shaded areas indicate the within-subject standard error (SE) [31]. Regions in which STRFs differ significantly from 0 are marked
with more saturated (less faded) colors (p 0.05, corrected for time/frequency). Data are available in S1 Data. HWR, half-wave rectification; LH, left
hemisphere; MEG, magnetoencephalographic; RH, right hemisphere; ROI, region of interest; SE, standard error; STRF, spectrotemporal response function;
TRF, temporal response function.
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onsets in the mixture than for onsets in either of the sources (latency mixture: 72 milliseconds;
attended: 81 milliseconds, t25 = 4.47, p< 0.001; ignored: 89 milliseconds, t25 = 6.92, p< 0.001;
amplitude mixture > attended: t25 = 8.41, p< 0.001; mixture > ignored: t25 = 7.66, p< 0.001).
This positive peak is followed by a negative peak only in responses to the mixture (136 millisec-
onds) and the attended source (150 milliseconds; latency difference t25 = 3.20, p = 0.004). The
amplitude of these negative peaks is statistically indistinguishable (t25 = 1.56, p = 0.132).

The mixture predictor is not completely orthogonal to the source predictors. This might
raise a concern that a true response to the mixture might cause spurious responses to the
sources. Simulations using the same predictors as used in the experiment suggest, however,
that such contamination is unlikely to have occurred (see S1 Simulations).

Fig 3. Responses to the 2-speaker mixture, using the stream-based model. (A) The envelope and onset representations of the acoustic mixture and the 2
speech sources were used to predict MEG responses. (B) Individual subject model fit improvement due to each predictor, averaged in the auditory cortex
ROI. Each predictor explains neural data not accounted for by the others. (C) Auditory cortex STRFs to onsets are characterized by the same positive/
negative peak structure as STRFs to a single speaker. The early, positive peak is dominated by the mixture but also contains speaker-specific information. The
second, negative peak is dominated by representations of the attended speaker and, to a lesser extent, the mixture. As with responses to a single talker, the
envelope STRFs have lower amplitudes, but they do show a strong and well-defined effect of attention. Explicit differences between the attended and ignored
representations are shown in the bottom row. Details as in Fig 2. (D) The major onset STRF peaks representing individual speech sources are delayed
compared with corresponding peaks representing the mixture. To determine latencies, mixture-based and individual-speaker-based STRFs were averaged
across frequency (lines with shading for mean ±1 SE). Dots represent the largest positive and negative peak for each subject between 20 and 200 milliseconds.
Note that the y-axis is scaled by an extra factor of 4 beyond the indicated break points at y = 14 and −6. Data are available in S2 Data. LH, left hemisphere;
MEG, magnetoencephalography; RH, right hemisphere; ROI, region of interest; SE, standard error; STRF, spectrotemporal response function.
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Neural Representations: Selective Attention

Two competing speakers,  
selectively attend to one 
• more illuminating since more 

complex auditory scene

• need more care re: “stimulus” 

responsible for responses

- acoustic mixture entering ears

- foreground speech

- background speech


• estimate all TRFs simultaneously

- compete to explain variance

Brodbeck et al. (2020) Neural Speech Restoration at the Cocktail Party …, PLoS Biol



• TRFs predict neural 
response to speech


‣ Analogous to evoked 
response


‣ Peak amplitude ≈ 
processing intensity


‣ Peak Latency ≈ source 
location 
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Do we…

‣ Anticipate word boundaries based on context?

‣ Infer them later based on consistency?  

(Norris & McQueen, 2008)

paths are successful in explaining the data on human continuous
spoken-word recognition.

The Input to Shortlist B

A final motivation for the development of Shortlist B was the
need to improve on the account of early phonetic analysis offered
by the original Shortlist model. The input to Shortlist A is simply
a string of phonemes. The representations of those phonemes have
no internal structure, and all phonemes are treated equally. There
is therefore nothing in the input to the word-recognition process to
indicate that listeners find some phonemes more confusable than
others. Furthermore, this kind of input to word recognition is
discrete and categorical in two inappropriate ways. First, it is
discrete in temporal terms. That is, there is no overlap of evidence
for different speech sounds, as if, counterfactually, there were no
effects of coarticulation in the speech signal. Second, this kind of
input is discrete in informational terms: For any segmental position
in the input there is 100% support for one and only one phoneme.
There is, however, considerable evidence (reviewed in McQueen,
2007) to suggest that the word-recognition process is continuous in
both the temporal and informational senses. Acoustic information
modulates word recognition on a much finer time-scale than pho-
neme by phoneme, and that information concerns within-phoneme
variability. The input to Shortlist A is therefore inadequate.
To date there have been three different approaches to producing

more realistic input representations in models of spoken-word
recognition. One option is to model the input noncategorically.
The input in TRACE (TRACE II, to be more precise; McClelland
and Elman, 1986), for example, consists of a vector of phonetic
features that varies over time. Although this kind of input is more

detailed, it still involves considerable oversimplification, particu-
larly with respect to the time-course with which featural informa-
tion becomes available. Critically, this approach depends on a
largely untested set of assumptions about what evidence the lis-
tener can extract about different features (and hence phonemes) in
any stretch of input.
A second option is to construct a model that takes the raw

acoustic waveform as its input. Both TRACE I (Elman and Mc-
Clelland, 1986; McClelland & Elman, 1986) and SpeM (Scharen-
borg et al., 2005) take this approach. A limitation of this method,
once again, is that there is little reason to believe that there will be
a close mapping between the acoustic-phonetic processes and
representations in these models and those used by human listeners.
Scharenborg et al., for example, derive phonemic representations
with a conventional hidden Markov model phone recognizer, as
used in ASR systems. To the extent that this recognizer deviates
from human behavior, the results of the SpeM model as a whole
could be misleading.
A third alternative is to accept that it may be premature to expect

to produce a well-motivated model of the early stages of speech
recognition and, instead, to try to simulate these processes using
data from human phoneme or word confusions (e.g., Luce &
Pisoni, 1998). Even though this approach sidesteps the question of
how the early stages of recognition operate, it enables one to
present later stages of a model with input that corresponds more
closely to the input that would be received from the human
perceptual system. For example, if listeners have more difficulty
discriminating one pair of phonemes than another, then the input to
the model should reflect that difference. Luce and Pisoni (1998)
have used this procedure to great effect in the NAM to explain a

The cat a log in a lie

cattle 

catalogue inner 

library 

eye 

login 

The cat a log in a lie 

cattle

catalogue inner 

library 

eye 

login 

TR

Figure 1. Recognition of the phrase “The catalogue in a library,” as spoken by speaker of British English:
/ðəkætəlɒgInəlaIbrI]. The upper panel shows the competitive inhibition process that occurs among activated
candidate words in an interactive-activation model, such as Shortlist A. Words that compete for the same stretch
of input inhibit each other via direct, bidirectional inhibitory connections. Only a subset of the best-matching
candidates is shown. The lower panel illustrates the path-based search through a word lattice used in automatic
speech recognition and Shortlist B. Paths connect sequences of lexical hypotheses from a root node (R) to a
terminal node (T); not all paths or words are shown. The dashed and dotted arrows are examples of connections
between noncontiguous words (see text for details).
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expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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Figure 3. Brain Responses to Two Concurrent Speakers
Details analogous to Figure 2. The three columns display results for the model components for: the attended speech stream (left), the actual acoustic stimulus

mixture (middle), and the unattended speech stream (right). The upper part of the figure displays results for acoustic features, the lower part for lexical processing.
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• Measuring Brain Responses with Magnetism

• Linear Shift-Invariant Kernels

• Motivation: neural response as convolution with stimulus

• Examples: neural response as convolution with stimulus

• Example: objective measure of intelligibility

Outline



Neural Markers of Speech Intelligibility
•Neural correlate of understanding/intelligibility?


o very high clinical potential

o most intelligibility manipulations alter acoustics, 

but not all

o can use “priming” to alter intelligibility

o corresponding neural response?

o good candidates: linguistic predictors, e.g., 

word onsets



Intelligibility Experimental Design
• Manipulate intelligibility but 

keep acoustics unchanged

- Speech acoustics:  

three-band noise-
vocoded speech


- Intelligibility manipulated 
via priming


• Hypothesized intelligibility 
measure(s)

- word boundaries
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Behavioral Results: Clarity

Clarity rating increases from 
PRE condition  
to POST condition
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• Measuring Brain Responses with Magnetism

• Linear Shift-Invariant Kernels

• Motivation: neural response as convolution with stimulus

• Examples: neural response as convolution with stimulus

• Example: objective measure of intelligibility

Summary

⃗∇ × ⃗B =
4π
c

⃗J

B = LJ
r(t) = ∫ h(t − t′￼)s(t′￼)dt′￼

r(t) = Σk ∫ hk(t − t′￼)sk(t′￼)dt′￼+ Σj ∫ hj(t − t′￼)sj(t′￼)dt′￼

acoustic linguistic



thank you

http://www.isr.umd.edu/Labs/CSSL/simonlab

These slides
available at:
ter.ps/simonpubs

Mastodon: @jzsimon@mas.to

http://www.isr.umd.edu/Labs/CSSL/simonlab

