
 

  

 
Abstract - Complex numbers appear naturally in biological 

systems in the context of the Fourier transform. In particular, 
physiological magnetic field data from whole head magneto-
encephalography (MEG) is complex after a Fourier transform. 
The whole-head MEG Steady State Response (SSR) to a 
stationary modulated stimulus results in a complex magnetic field 
for each MEG channel, from the frequency corresponding to that 
of the stimulus modulation.  This complex data set is used to 
estimate the neural current sources generating the magnetic field, 
naturally leading to complex current sources. We show that 
standard inverse methods of estimating the current sources, such 
as the single equivalent-current dipole, generalize to complex 
sources in a useful and straightforward manner. The usage and 
utility of the complex magnetic field and the complex neural 
current source are demonstrated using examples from auditory 
SSR experiments. 

I. INTRODUCTION 
The Fourier transform takes a real valued time-varying 

signal and represents the same signal by a complex valued 
function of frequency. The original signal, at one time instant, 
is represented by a single real number, but the Fourier 
transform, for a particular frequency, is represented by two real 
numbers, e.g. a magnitude and a phase.  

Magnetoencephalography (MEG) measures the magnetic 
fields generated by neural currents. These electrical currents 
generate measurable magnetic fields according to the classical 
physical equations of electrodynamics. The small (hundreds of 
femtoteslas) signals can be measured with superconducting 
quantum interference devices (SQUIDs) [1]. Just as real 
numbers can be usefully generalized to complex numbers, real 
valued fields can be generalized to complex valued fields, and, 
in particular, real valued vector fields can be generalized to 
complex valued vector fields. In the case of MEG signals, the 
Fourier transform of the time varying magnetic field generates 
a complex magnetic field, for every spatial point (channel) the 
field is measured, at each frequency. Related transforms, such 
as the wavelet transforms, also give complex valued fields. 

The utility of these complex valued responses can be seen in 
experiments that use the Steady State Response (SSR) 
paradigm. In this paradigm, a time-stationary stimulus with 
periodic structure generates a neural response with the same 
periodic structure. Example stimuli from auditory studies 

include pure tones with periodically modulated amplitude and 
periodic trains of short-duration clicks (or tone-pips), and 
others. In each case, there is a corresponding neural response 
with the same periodicity. The MEG SSR for sinusoidally 
amplitude modulated (SAM) tones has been well documented 
[2-4] and the sister phenomenon in electroencephalography 
(EEG) has a long and rich history [5]. For SAM tones, the 
frequency at which the response is strongest is the stimulus 
modulation frequency. The magnetic field response at the 
stimulus modulation frequency gives a complex magnetic field: 
both phase and amplitude information. 

The interpretation of the amplitude is standard: it is the 
strength of the response at the stimulus modulation frequency. 
The interpretation of phase is also straightforward: it 
corresponds to the time-delay of the response in units of the 
stimulus modulation frequency (for phase measured in cycles).  

The measured magnetic fields are typically not the final 
result; rather, the neural currents generating them. There are 
several approaches used to tackle this “inverse” problem [6]. 
One of the simplest is the equivalent-current dipole 
approximation, which uses a classic least-squares minimization 
algorithm, along with physical simplifications due to Sarvas 
[7]. The result is one or more equivalent-current source dipoles, 
which generate a magnetic field configuration approximating 
the observed magnetic field configuration.  

Applying this procedure to a real magnetic field leads to real 
equivalent-current dipoles, each of which, in addition to its 
location, is described by the three real numbers needed to fully 
describe a real vector: the three components ( qx , qy , qz ), or 
equivalently, a two-dimensional orientation ( θ , ϕ ) and a 
magnitude (q). A complex magnetic field configuration leads to 
complex equivalent-current dipoles, each of which, in addition 
to its location, is described by three complex numbers, or 
equivalently six real numbers. It is tempting to describe a 
complex dipole vector solely by its orientation (two real 
numbers) and a complex magnitude (two real numbers, e.g. 
magnitude and phase), but this does not cover all six of the 
necessary degrees of freedom.  

II. METHODS 

A. Complex Magnetic Fields from MEG and SSR Analysis 
For specificity, we present the case of a stimulus with a 

single modulation frequency ( fmod ), and a response 
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measurement window of duration ( T ) which is much longer 
than a single cycle period ( Tmod = 1 fmod ) and is an integer 
multiple of it  ( 1, >>= NNTT mod ). In this case, the SSR 
complex response is given by the Nth component of the discrete 
Fourier transform of the time waveform of the response (where 
the DC response is the zeroth component). We make the further 
simplifying assumption that the MEG sensors are simple 
magnetometers or gradiometers (e.g. not vector 
magnetometers), giving a scalar (single real number) valued 
waveform. This gives a time-waveform at each MEG channel, 
derived from the time-varying real magnetic field, spatially 
discretized and spatially projected into each sensor. Each 
channel’s time-waveform is discrete Fourier transformed and 
only the component corresponding to the stimulus frequency is 
examined. The result is a map of complex SSR responses, i.e. a 
map of (spatially discretized) complex magnetic field 
projections. A typical response pattern is shown in Fig. 1, for 
fmod = 32 Hz  and T = 100 s , for a single subject. Each 

sensor’s complex response is depicted by a phasor, i.e. a vector 
arrow whose magnitude is proportional to the response 
magnitude and whose direction corresponds to the phase.  

The whole head complex SSR can connect visually with 
commonly used magnetic field contour maps by projecting the 
complex values onto a complex line of constant phase. That is 
the complex numbers are turned into real (positive and 
negative) numbers by rotating them by the phase of this 
complex line and then taking the real part. This visual aid can 
greatly increase a viewer’s ability to see natural structures in 
the array of complex responses. One straightforward method is 
to use the phase of the peak of the spatial variance as measured 
over half the modulation cycle.  

B. Complex Single Equivalent-Current Dipole 
1) Forward Problem 

The whole-head magnetic field is calculated using the 
complex version of the Sarvas spherical head model [7]. 
Outside the spherical conductor (head), the complex magnetic 
field b at a sensor with location r  is given by [8]:  

 b(r) =
µ0

4πF2 (r,rq)
(F(r,rq)q × rq − (q × rq ⋅ r ∇F(r,rq))  (1) 

where qr  is location of the complex current dipole q , 
F(r, rq) = d(rd + r2 − (rq ⋅ r)) , d = r − rq  and d =| d | .The 
complex magnetic field at a sensor due to multiple current 
dipoles is the simple sum of the contributions from each 
individual dipole.  

For an axial gradiometer system a measurement is given by 
 m(ri ) = µ(b(rupper ) − b(rlower )) , (2) 
where rupper  and rlower are locations of two adjacent coils, µ is a 
constant, and i ranges over the channels.  
 

 
Fig. 1. Whole-head SSR from one subject in an auditory MEG experiment. The 157 channels are shown 

on the surface of a flattened head. Each arrow represents the complex field value at a sensor. 

 
2) MRI-MEG Matching and Realistic Head Models 
Accurate solutions to forward problem require anatomical 
information obtained from high-resolution volumetric brain 
images obtained with MRI. If this is not available, a virtual 
MRI file may be generated from Polhemus data, consisting of 
head shape file and marker coil file. The measurement given by 
our system is based on MEG machine coordinates. The virtual 
MRI coordinates must be aligned with the coordinate system in 
MEG machine before analysis can begin. This process is done 
with help of 5 markers in our system. The transform matrix 
between MEG machine coordinates and MRI coordinates is 
given as 
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where xd yd zd[ ]T  are displacements. This matrix enables 
us to transform between the coordinate systems. 

The closed-form solution for the forward problem has been 
discussed in previous section for heads with conductivity 
profiles that can be modeled as a set of nested concentric 
homogeneous and isotropic sphere. In real experiments, 
however, heads usually are inhomogeneous, anisotropic and 
not spheres. Nevertheless a spherical head may approximate 
the real head. The sphere should be the best fit possible (in the 
sense of least mean square error) with the head shape. The 
spherical models approximation work reasonably well as 
reported by Baillet et al. [6]. 
 
3) Calculate Lead Field for Spherical Heads 

If the primary sources were specified in both locations and 
moments, then calculation of (1) could proceed directly, given 
the sensors location. The inverse problem, however, involves 



 

  

finding both a suitable set of sources and their corresponding 
location, which best approximate the data given. This can be 
implemented in a two-step approach, where the location is 
found before the source moments are calculated. It is applicable 
because the complex magnetic field is linear with respect to the 
dipole moment and nonlinear with respect to the location, as 
seen in (1). 

Since the complex magnetic field is linear with respect to the 
complex dipole moment q , we may decompose moment q into 
three orthogonal complex dipole components and calculate the 
magnetic field for each of them. Denote the dipole location as 
rq = [rx ry rz ]T , or in polar format as rq = | rq |,θ,φ( ). We 
may treat the direction of rq as a new x-axis and define a new 3 
dimensional coordinate system. Then the projection of q into 
this new three dimension coordinate system can be represented 
by 
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Sarvas [7] shows that radically oriented dipoles do not produce 
any external magnetic field outside a spherically symmetric 
volume conductor, regardless of the sensor orientation. Since 

xq' is always radically oriented, we may ignore its effect on 
the magnetic field. Instead having three free components of q , 
we need calculate only two. We may project q into q 'y  and 
q 'z ,  and the lead field A can be easily computed. 
 
4) Inverse Problem 

Using the above spherical head model for the forward 
problem, we follow a linear model to solve the inverse problem 
[6]. As above, the complex magnetic field is linear with respect 
to the complex dipole moment q  and nonlinear with respect to 
the location rq . For simultaneous MEG measurements made at 
N sensors by p dipoles, M = AST , where M is an array of the 
complex MEG measurements at the N sensors, ST  is an array 
of 2p complex dipole magnitudes (a pair for each dipole, 
corresponding to the spatial projections of the two independent 
orientations, q 'y  and q 'z , perpendicular to the radial 
direction), and A, the lead field matrix is defined by the linear 
relationship between M and ST  in (1).  

In the presence of measurement errors, the forward model 
may be represented as M = AST + ε , where ε  is a complex 
spatio-temporal noise (error) matrix. By defining the cost 

function as the measure of fitness, the least-squares estimation 
minimizes the cost function  

 JLS = M − AST

F

2
,  (5) 

where the cost function is calculated by the Frobenius norm of 
the complex error matrix. 

For any selection of sensor locations and complex dipole 
locations, the matrix S that will minimize JLS  is ST = A+M , 
where A+ is the pseudoinverse of A . We then solve for JLS  by 
minimizing the adjusted cost function: 

 JLS = M − A(A+M)
F

2
= (I − AA+ )M)

F

2
 (6) 

Minimization methods range from grid search and downhill 
simplex searches to global optimization schemes [9].  

It should be emphasized that the key feature of this method is 
the generalization of the magnetic field and the source vectors 
to complex quantities. Aside from this essential difference, the 
algorithm is unchanged from the real version [6].  

C. Complex Multi-Equivalent-Current  Dipole Fitting 
MEG is especially sensitive to neuronal activity in auditory 

cortical areas. MEG auditory responses lateralize strongly (in 
contrast to EEG responses which mix across cortical 
hemispheres and are strongest medially), making 
multi-equivalent-current dipoles fitting necessary.  

III. EXAMPLE FROM AUDITORY SSR 
As an example of the utility of the complex 

equivalent-current dipole analysis method, we calculate a 
transfer function: the response (strength and phase), at the 
stimulus frequency, as a function of stimulus frequency. The 
auditory whole-head SSR is measured for several frequencies. 

Sinusoidally amplitude-modulated sounds of 1 s duration 
were presented to each subject. The 4 stimuli were made with a 
carrier of 400 Hz and modulation frequencies 16 Hz, 32 Hz, 48 
Hz and 64 Hz. All 4 stimuli were presented 100 times in a 
random order with interstimulus intervals from 400 to 550 ms, 
interspersed with other modulated stimuli. The loudness was 
approximately 70 dB SPL.  

Recordings were performed in a magnetically shielded room. 
The magnetic signals were recorded using a 160-channel, 
whole-head axial gradiometer system (KIT, Kanazawa, Japan). 

 
 
Fig. 2 Responses from the same subject for four different modulation frequencies: 16 Hz, 32 Hz, 48 Hz, 64 Hz. In every case, each hemisphere is dominated by a classic pattern of dipole-like generated activity, with 

variation in location, size, and strength across stimuli. 



 

  

The magnetic signals were bandpassed between 1 Hz and 200 
Hz, notch filtered at 60 Hz, and sampled at the rate of 1000 Hz.      

The measured responses from 50 to 1050 ms post-stimulus 
were concatenated, giving 4 total responses (100 s duration) for 
each channel. The discrete Fourier transform was applied to the 
concatenated data, giving 4 frequency responses (0.01 Hz 
resolution) for each channel. The whole-head SSR is the 
magnitude and phase at the modulation frequency for each 
channel. The response is characterized by two complex, 
equivalent-current dipoles responsible for both the right and 
left-hemispheric portions of the response. The response 
strength is measured by the two complex dipoles’ semimajor 
axis (of the ellipse swept out by the complex vector), and its 
phase by the semimajor axis’ phase (subtracting the component 
due the 50 ms delay). 

In Figure 2, the whole-head SSR, as a function of stimulus 
modulation frequency, dramatically shows the MEG response 
as a function of modulation frequency. Figure 3 shows the 
results of two equivalent-current dipoles for the same responses. 
The two hemisphere transfer functions for this subject, as 
measured by the two complex equivalent-current dipoles, are 
illustrated in Figure 4, with separate plots for amplitude and 
phase. This summarizes concisely the data seen in both 
hemisphere responses in Figure 2: the amplitude graph captures 

faithfully the visible strength in each hemisphere, and the phase 
graph captures faithfully the corresponding changes of phase in 
the same plots. 

IV.   DISCUSSION 
The complex magnetic field distributions arising in Fourier 

analyzed MEG studies have a natural interpretation as 
oscillations with the specified amplitude and phase. Visual 
representations of the complex responses over the whole head 
are invaluable in identifying structure and patterns in the whole 
head response. Additionally, complex magnetic field 
distributions arise from presumed neural sources with similarly 
complex properties. None of the methods outlined here are 
particular to MEG. Only small modifications are necessary to 
apply the methods to EEG, or related techniques. 
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Fig. 4. The transfer function derived from two equivalent dipoles fitting of the whole head aSSRs shown 
in Fig. 2. Upper graph: Amplitude in dB. Lower graph: Phase in degrees. 

 

 
Fig. 3. Results of two-equivalent-current dipoles fitting for the whole head configurations in Fig. 2. 
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