Neural Representations of Continuous Speech in Auditory Cortex

Jonathan Z. Simon

Department of Biology Department of Electrical & Computer Engineering Institute for Systems Research University of Maryland

http://www.isr.umd.edu/Labs/CSSL/simonlab

Winter Storm, 23 January 2015

Acknowledgements

Grad Students

Francisco Cervantes Mahshid Najafi Alex Presacco Krishna Puvvada Ben Walsh

Past Grad Students

Nayef Ahmar Claudia Bonin Maria Chait Marisel Villafane Delgado Kim Drnec Nai Ding Victor Grau-Serrat Ling Ma Raul Rodriguez Juanjuan Xiang Kai Sum Li Jiachen Zhuo **Undergraduate Students** Abdulaziz Al-Turki Nicholas Asendorf Sonja Bohr Elizabeth Camenga **Corinne Cameron** Julien Dagenais Katya Dombrowski Kevin Hogan Kevin Kahn Andrea Shome **Madeleine** Varmer Ben Walsh **Collaborators' Students** Murat Aytekin Julian Jenkins David Klein Huan Luo **Past Postdocs** Dan Hertz Yadong Wang

Collaborators

Catherine Carr Monita Chatterjee Alain de Cheveigné Didier Depireux Mounya Elhilali Jonathan Fritz Cindy Moss David Poeppel Shihab Shamma

Funding

NIH R01 DC 008342 NIH R01 DC 007657 NIH R01 DC 005660 NIH R01 DC 000436 NIH R01 AG 036424 NIH R01 AG 027573 NIH R01 EB 004750 NIH R03 DC 004382 USDA 20096512005791

Acknowledgements

Grad Students

Francisco Cervantes Mahshid Najafi Alex Presacco Krishna Puvvada Ben Walsh

Past Grad Students Nayef Ahmar Claudia Bonin Maria Chait Marisel Villafane Delgado Kim Drnec Nai Ding Victor Grau-Serrat Ling Ma Raul Rodriguez Juanjuan Xiang Kai Sum Li Jiachen Zhuo

Undergraduate Students Abdulaziz Al-Turki Nicholas Asendorf Sonja Bohr Elizabeth Camenga **Corinne Cameron** Julien Dagenais Katya Dombrowski Kevin Hogan Kevin Kahn Andrea Shome **Madeleine** Varmer Ben Walsh **Collaborators' Students** Murat Aytekin Julian Jenkins David Klein Huan Luo **Past Postdocs** Dan Hertz Yadong Wang

Collaborators

Catherine Carr Monita Chatterjee Alain de Cheveigné Didier Depireux Mounya Elhilali Jonathan Fritz Cindy Moss David Poeppel Shihab Shamma Funding

NIH R01 DC 008342 NIH R01 DC 007657 NIH R01 DC 005660 NIH R01 DC 000436 NIH R01 AG 036424 NIH R01 AG 027573 NIH R01 EB 004750 NIH R03 DC 004382 USDA 20096512005791

Introduction

- Magnetoencephalography (MEG)
- Cortical Representations of Speech
 - Encoding vs. Decoding
 - Attended vs. Unattended Speech
 - Foreground vs. Background

Neural Signals & MEG

- •Direct electrophysiological measurement
 - not hemodynamic
 - •real-time
- •No unique solution for distributed source
- •Measures spatially synchronized cortical activity
- •Fine temporal resolution (~ 1 ms)
- •Moderate spatial resolution (~ 1 cm)

Photo by Fritz Goro

MEG Auditory Field

Strongly Lateralized

Chait, Poeppel and Simon, Cerebral Cortex (2006)

MEG Auditory Field

Chait et al., Cerebral Cortex (2006)

MEG Auditory Field

Chait et al., Cerebral Cortex (2006)

Time Course of MEG Responses

Auditory Evoked Responses

- MEG Response Patterns Time-Locked to Stimulus Events
- Robust
- Strongly Lateralized

MEG Responses to Speech Modulations

MEG Responses Predicted by STRF Model

Neural Reconstruction of Speech Envelope

Neural Reconstruction of Speech Envelope

Ding & Simon, J Neurophysiol (2012) Zion-Golumbic et al., Neuron (2013) Reconstruction accuracy comparable to single unit & ECoG recordings

Neural Encoding of Speech:Temporal

Speech in Noise

Ding & Simon, J Neuroscience (2013)

Speech in Noise

Ding & Simon, J Neuroscience (2013)

Neural Reconstruction of Underlying Speech Envelope

Neural Reconstruction of Underlying Speech Envelope

Neural Reconstruction of Underlying Speech Envelope

Contrast Index

Neural Reconstruction of Underlying Speech Envelope

Reconstruction Accuracy

Neural Reconstruction of Underlying Speech Envelope

correlation

Reconstruction Accuracy

Correlation with Intelligiblity

Neural Reconstruction of Underlying Speech Envelope

Experiments

Experiments in Progress

Experiments in Progress

Two Competing Speakers

Selective Neural Encoding

Selective Neural Encoding

Selective Neural Encoding

Unselective vs. Selective Neural Encoding

Unselective vs. Selective Neural Encoding

Selective Neural Encoding

Identical Stimuli!

Ding & Simon, PNAS (2012)

Identical Stimuli!

Ding & Simon, PNAS (2012)

Single Trial Speech Reconstruction

Ding & Simon, PNAS (2012)

Single Trial Speech Reconstruction

Forward STRF Model

Spectro-Temporal Response Function (STRF)

Forward STRF Model

Spectro-Temporal Response Function (STRF)

STRF Results

STRF separable (time, frequency)
300 Hz - 2 kHz dominant carriers
M50_{STRF} positive peak
M100_{STRF} negative peak

STRF Results

STRF separable (time, frequency)
300 Hz - 2 kHz dominant carriers
M50_{STRF} positive peak
M100_{STRF} negative peak

STRF Results

- STRF separable (time, frequency)
 300 Hz 2 kHz dominant carriers
 M50_{STRF} positive peak
 M100_{STRF} negative peak
- •M100_{STRF} strongly modulated by attention, *but not M50_{STRF}*

Neural Sources

- •M100_{STRF} source near (same as?) M100 source: Planum Temporale
- •M50_{STRF} source is anterior and medial to M100 (same as M50?): Heschl's Gyrus

•PT strongly modulated by attention, *but not HG*

Three Competing Speakers

Individual Speech Streams

Stimulus Background

Speaker 2

Two Speakers

Stimulus Background

Speaker 2

Two Speakers

Stimulus Background

Speaker 2

Two Speakers

Stimulus Background

Individual Speech Streams

Individual Speech Streams

Individual Speech Streams

Individual Speech Streams

Backgrounds vs. Background

Backgrounds vs. Background

Backgrounds vs. Background

Backgrounds vs. <u>Background</u>

High latency areas (PT) represent *fused* background with better fidelity than *individual* backgrounds (p = 1.3E-05)

Foreground vs. Background

Backgrounds

Individual Speech Streams

Foreground vs. Background Early vs. Late

Foreground vs. Background Early vs. Late

Foreground vs. Background Early vs. Late

Summary

- Cortical representations of speech
 - ✓ representation of envelope (up to ~10 Hz)
- Object representation at 100 ms latency (PT), but not by 50 ms (HG)
- Consistent with being neural representations of auditory perceptual object
- Preliminary evidence for
 - ✓ PT: additional fused background representation
 - ✓ HG: almost equal representations

Thank You