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1. Introduction 

A key requirement in the study of sensory nervous systems is the ability to 

characterize effectively neuronal response selectivity. In the visual system, striving 

for this objective yielded remarkable progress in understanding the functional 

organization of the visual cortex and its implications to perception. For instance, the 

discovery of ordered feature representations of retinal space, color, ocular 

dominance, orientation, and motion direction in various cortical fields has catalyzed 

extensive studies into the anatomical bases of this organization, its developmental 

course, and the changes it undergoes during learning or following injury. In the 

primary auditory cortex (A1), response selectivity of the neurons (also called their 

receptive fields) is ordered topographically according to the frequency they are most 

tuned to, an organization inherited from the cochlea. Beyond their tuning, however, 

A1 responses and receptive fields exhibit a bewildering variety of dynamics, 

frequency bandwidths, response thresholds, and patterns of excitatory and 

inhibitory regions. All this has been learned over decades of testing with a large 

variety of acoustic stimuli (tones, clicks, noise, and natural sounds) and response 

measures (tuning curves, rate-level functions, and binaural maps). 

A response measure that has proven particularly useful beyond the feature-

specific measures enumerated earlier is the notion of a generalized spatiotemporal, 

or equivalently for the auditory system, the spectro-temporal receptive field (STRF). 

It is distinguished from other measures by its broader descriptive power 
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(encompassing both dynamics and spectral selectivity) and its relatively 

noncommittal nature (not requiring too much prior knowledge such as frequency 

tuning or threshold). In the last two decades, the STRF has become widely employed 

in all sensory systems (Aertsen & Johannesma, 1981; De Valois & De Valois, 1988; 

DeAngelis, Ohzawa, & Freeman, 1995; Gosselin & Schyns, 2002; Hochstein & 

Shapley, 1976; Sripati, Yoshioka, Denchev, Hsiao, & Johnson, 2006), and especially in 

the auditory system where it had found its original promise, development, and 

examination of its value and liability (Aertsen & Johannesma, 1981; De Boer, 1967; 

de Boer & de Jongh, 1978; Sripati, Yoshioka, Denchev, Hsiao, & Johnson, 2006). The 

STRF has primarily been viewed as a linear characterization of the complex 

stimulus-response transformations seen in sensory neurons. However, there are 

well-understood limitations of the STRF ability to capture all the essential details of 

a sensory neuron’s response. These stem from the existence of a host of known 

nonlinearities such as spiking threshold, rate saturation, synaptic-depression) that 

can complicate the interpretation of the STRF and render its representation 

stimulus dependent or meaningless. Nevertheless, the utility of the STRF has 

inspired deeper and broader examination of its constraints and pitfalls, of ways to 

circumvent them (Atencio, Sharpee, & Schreiner, 2008; Christianson, Sahani, & 

Linden, 2008; David, Hayden, & Gallant, 2006; Nagel & Doupe, 2008) or even exploit 

them to learn more about the nonlinearities in the system (Ahrens, Linden, & Sahani, 

2008; Klein, Simon, Depireux, & Shamma, 2006; Theunissen, Sen, & Doupe, 2000).  

In the following sections, we explore the mathematical bases of the STRF, its 

richness and limitations, and ways to estimate it reliably. We then briefly review its 

utility in a wide range of investigations, including the cortical encoding of sound and 

the exploration of learning and rapid plasticity during behavior. 

 

2. Systems approach to characterizing cortical neurons 

Approaches to understanding sound processing in the auditory system, 

particularly at the level of auditory cortex, have often treated neurons as “black-box” 

devices; i.e. systems whose internal workings are opaque, but that can be 
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mathematically described solely in terms of their input-output relationship. Each 

neuron is then understood as a transducer that is driven via sensory stimulation by 

external sounds to evoke a neural response. In absence of any stimulation, the 

neuron is in its spontaneous (or quiet) state. When presented with a sensory input, 

the neuron is driven to spike either actively above its spontaneous state; or in a 

suppressive manner below its spontaneous state. The pattern of neural firing 

depends on the characteristics of the sensory stimulation and its match to the 

neuron’s own tuning properties.  

By understanding how a stimulus can drive a neuron to fire in an excitatory or 

inhibitory fashion, one gains better insight into the functional role of this neuron in 

sensory information processing, its tuning characteristics, and predictive knowledge 

of the neuron’s behavior under any stimulation conditions. 

Clearly, the ability to fully describe the workings and behavior of neurons (even if 

treated as black boxes) is often impossible. The transducer view of neurons is only 

possible when the neuron’s output is controlled solely by its sensory input. Most 

sub-cortical stages can be reduced –somewhat- to this transducer view. Such is not 

the case for sensory cortex, where many neurons appear to play a role not only in 

sensory encoding, but also in memory, decision and behavior; therefore integrating 

information across a neural network spanning one or many neural loci. As the 

circuitry becomes more intricate, it is often impossible to understand the role of a 

single neuron in abstraction of the complex dynamics of the network in which it 

exists. 

With this caveat in mind, on can still employ a number of tools to gain elementary 

insight into the sensory information encoding of cortical neurons, the topic of 

interest in this issue. Systems theory provides the mathematical language to 

characterize the behavior of neurons (or systems in general), and provide a better 

understanding of their function (Bender, 2000). For many complex systems, such as 

the nervous system, this characterization often focuses on investigating the 

dependencies of the output function (neural response) on the input function (input 

stimulation). This approach adopts the viewpoint of functionals, in which the signal 

as a whole is considered, rather than its values at given points in time. In other 
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words, the neuron is viewed as a transducer of an input signal �(�) to a neural 

response �(�) via a mapping �: 

���� = ���(�)�      (1) 

�[. ] is a functional (function of a function) of the input signal �(�). By treating the 

neuron as a black-box and limiting its characterization to its input-output function, 

we are deriving a good understanding of its behavior without incorporating any 

knowledge of its internal mechanisms (e.g. ionic channels), its biophysical principles 

or anatomical structure. Such simplification is neither uncommon (Isermann & 

Munchhof, 2011; Rugh, 1981; Sastry, 1999), nor unwarranted when dealing with a 

complex structure such as cortical neurons. 

The simplest form of systems is linear and time-invariant (LTI). A linear system 

obeys two keys rules: homogeneity and superposition. The former means that the 

response to stimulus � that is scaled by a factor 	 is also scaled by the same amount. 

The later means that a cell driven by the sum of two stimuli �� + �� responds to the 

sum of the responses to the individual stimuli. A time-invariant system is one whose 

behavior depends on its state, independent of time; so that the system's response to 

a given stimulation does not depend on the time it is applied. 

LTI systems that are single-input, single-output can be represented by the 

familiar convolution integral: 

���� = 
 ℎ������ − �����

��
           (2) 

where �(�) is the input and �(�) the output of the system. The kernel ℎ(�) is called 

the impulse response of the system, which is the limit of the sequence of responses 

when the system is excited with input that tends towards an impulse 
(�).  

Intuitively, the convolution represents the correlation between the system’s 

impulse response ℎ(�) and the time-reversed input around a given instant  ��� − �� 

to produce the output at time �. This operation is repeated for all time �, as the input 

signal continues to evolve. Thus, the system produces the strongest response when 

the input matches the system function ℎ(�). In this regard, ℎ(�) is sometimes 

thought of as a filter that selectively operates on the input signal in order to enhance 

or suppress certain components. Alternatively, one can think of ℎ(�) as a set of 
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weights which defines the output at time � as the weighted sum over the values of 

the input. If the system is not causal, this dependency would extend to the past, 

present and future values of �(�); while for a causal system, this dependency is 

limited to only past and present values of �(�). The ease of working with linear, 

time-invariant systems stems from the fact that ℎ(�) gives a full description of the 

black box model. It provides the mapping between any input signal and its 

corresponding output signal. If we know	ℎ(�), we know everything there is to know 

about the system and can fully predict its behavior. 

An equivalent representation of the convolution equation (Eq. 2) operates in 

Frequency domain. Denote the Fourier transform of ���� as �(�), defined as 

���� = 
 �(�)����������

��
     (3) 

where � = √−1. Taking the Fourier transform of both sides of Eq. 2 yields 

���� = �����(�)      (4) 

�(�) is called the transfer function of the system. It is related in a one-to-one 

mapping to the system impulse response ℎ(�) (via the Fourier transform); and just 

like ℎ���, knowing �(�) means knowing everything there is to know about the 

behavior of the LTI system under study. The Fourier-domain equation reinforces the 

notion that linear systems only output frequencies that are uniquely determined by 

the same frequencies in the input; in other words, the output �(�	) depends solely 

on �(�	)  and no other components of �(�) . The output �(�	)  is simply an 

amplification of �(�	) by an amount dictated by �(�	). Therefore, the output of a 

linear system to a pure tone is also a pure tone of the same frequency; possibly 

amplified or dampened, and likely shifted in phase.  

Such linearity cannot be expected or realistic in a system so plagued with 

nonlinearities such as the auditory system. A pure tone typically induces responses 

at the harmonics of the input frequency. The output to two pure tones is generally 

composed of the sum and differences of the harmonics of the input frequencies. This 

and a plethora of other nonlinear phenomena have been demonstrated throughout 

the auditory pathway, including two-tone suppression, dynamic intensity 

compression, lateral inhibition, masking and masking release phenomena as well as 
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unpredictable responses to natural stimuli (Goldstein, 1967; Nelken, 2004; Pickles, 

2008).  

When dealing with nonlinear systems, the convolution equation can be 

generalized to a more universal class of systems using Volterra series1 (Volterra, 

1959):          

���� = �	 + � �������� − ����
�

��

+ � � �����, ������ − ������ − ���������
�

��

�

��
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 �
���, ��, �
���� − ����(� − ��)�(� − �
)��������
�

��

�

��

�

��
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�����, ��, … , ��� is called the nth order Volterra kernel with independent variables 

��, ��, … , ��. It describes the nth order nonlinearity of the system (Mathews & 

Sicuranza, 2000; Rugh, 1981). � is called the order of the system, and can in theory 

be infinite. Note that Volterra series still assume that the system is time-invariant. It 

is clear that the convolution integral (Eq. 2) is a special case of the Volterra series 

equation (Eq. 5) by setting �����, ��, … , ��� = 0 for � > 1.  

Now, if we take the Fourier transform of both sides of Eq. 5, we get: 

���� = �	
��� + ���������+ � �����, � − ����������� − ������
�

��

+ 

� � �
���, ��, � − �� − ���������(��)�(� − �� − ��)������
�

��

�

��

+⋯ 

 

 

(6) 

where �����, ��, … , ��� is the n-dimensional Fourier transform of �����, ��, … , ���. 

Just like LTI systems, knowledge of the Volterra kernels (in either the time-domain 

or frequency-domain) allows one to quantify the strength of the system nonlinearity 

and to quantify the nonlinear energy transfer. 

Generally, Eq. 5 or Eq. 6 can be difficult to handle and practically challenging to 

determine especially for a system with unknown order �. The number of terms in 

                                                        
1 Volterra series descriptions are limited to nonlinear systems that obey certain smoothness 

constraints; particularly systems with fading memory (Sandberg, 1983). A general description of 

series analysis of systems can be found in work by contemporaries of volterra, including Brilliant and 

McFee (Brilliant, 1958; George, 1959; McFee, 1961; Wiener, 1958). 
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the operators does grow both with degree of nonlinearity in the system as well as 

input dimensionality. This greatly limits their applicability to low-dimensional 

systems with mild nonlinearities; and even then, the computation tends to be quite 

tedious and involved. 

A simpler formulation of the same functional has been proposed by Wiener, 

which reformulated the Volterra series representation into sums of 

multidimensional convolutions that are mutually uncorrelated; i.e. orthogonal with 

respect to zero-mean Gaussian white noise –GWN– (Wiener, 1958). By construction, 

the Wiener functional of order � can be obtained from the original Volterra kernels 

by a procedure similar to Gram-Schmidt orthogonalization; and is nothing but linear 

combinations of Volterra kernels up to order � (Ogunfunmi, 2007; Rugh, 1981).  

Their orthogonal nature also allows the Wiener series to be truncated after � 

functionals, giving the best �th order polynomial approximation to the system (given 

GWN input). Higher order Wiener functionals are independent and can be added 

without affecting the estimate of the lower order ones already computed. On the 

other hand, the relationship between the Wiener kernels and the system properties 

is more blurred. For instance, the first-order Wiener functional is not the only term 

containing the linear convolution; all odd order functionals contain a linear term; so 

truncating the Wiener series would misrepresent the contribution of the linear and 

other nonlinear components to the system’s behavior.  

The use of GWN stimulation and Wiener-series has proven quite successful in modeling 

neural processing in a number of sensory systems; particularly at the peripheral level 

(Eggermont, 1993; Johnson, 1980; Marmarelis & Marmarelis, 1978; Wickesberg, 

Dickson, Gibson, & Geisler, 1984). While somewhat successful, such white-noise 

technique has proven quite inadequate and inapplicable to central auditory loci, particularly 

auditory cortex for a number of reasons. The most obvious one being that white noise 

stimulation is quite stationary and fails to elicit responses from cortical neurons.  

 

The spectro-temporal receptive field (STRF): 

Cortical neurons are more responsive to rich sounds with non-static spectro-

temporal structures. As sounds journey up the auditory system to sensory cortex, 



8 

 

they come readily represented into their dynamic spectra. The cortical input is 

mapped onto a spectro-temporal representation; as tonotopically-organized 

temporal neural activity. It is therefore important to tie the spectro-temporal space 

with the functional definition presented above.  

To take the structure of the input to cortical neurons into account and also begin 

to gauge the role of the spectro-temporal structure of sound, we can revisit the 

formulation of the Volterra series model of a system; particularly its bilinear or 

quadratic term. From Eq. 5, the second order term of the Volterra series can be 

written as: 
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(7) 

 

where we recognize the quadratic term as the Wigner-Ville distribution2 of the input 

signal �(�); "
��, �� = 
 � #� − �

�
$ �(� + �

�
)��������� ; i.e. the Fourier transform of the 

signal’s autocorrelation function. Here, �!����  is defined as: 

�!������, �� ≡ 
 �����, ������������

��
     (8) 

and can be thought of as Fourier transform of the second-order Volterra kernel. Eq. 

7 gives a derivation of an STRF based on the Wigner-Ville distribution; and can be 

shown to be easily related to STRFs derived from other time-frequency 

representations of the signal via a filtering operation (Theunissen, Sen, & Doupe, 

2000). The class of bilinear time-frequency representations of signals is inter-

convertible with respect to one another, as smoothed or convolved versions of each 

other. Whether the Wigner-Ville, Choi-Williams distribution, the Gabor transform or 

                                                        
2 The presence of complex conjugation of �(�) in the equations is ignored since all stimuli are real-

valued.  
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the spectrogram representation, they can all be written in general form as (Cohen, 

1995; Grochenig, 2001; Sang-Won Nam & Powers, 2003):          

%
��, �� = ∭ Ψ�', ������������� 	�(� + �

�
)�∗(� − �

�
)�������()))))))*)))))))+

~Wigner-Ville	distribution
		

	�����'�

��
      (9) 

where Ψ�', �� is a kernel that determines the influence of cross-terms on the time-

frequency function. Note that Ψ�,, �� = 1 for the Wigner-Ville distribution. The 

choice of time-frequency representation to use depends on ease of interpretation 

and applicability to the sound class of interest (Eggermont & Smith, 1990; Kim & 

Young, 1994; Theunissen, Sen, & Doupe, 2000). It is also important to consider 

representations with proper support to enable mapping back and forth between 

�!����(i.e. the Fourier transform of the second-order Volterra kernel) and any 

other equivalent STRF representation of the neuron (see (Klein, Depireux, Simon, & 

Shamma, 2000) for a discussion). 

Regardless of the choice of spectro-temporal representation of the stimulus �(�), 

Eq. 7 shows that the second-order Volterra functional can be thought of as a linear 

system that processes the Wigner-Ville distribution of the stimulus (or other 

equivalent representations).  

 

3. Construction of Spectro-temporal Receptive Fields 

Reverse correlation: 

The most common way of constructing STRFs uses the classic reverse correlation 

method (De Boer & Kuyper, 1968). This technique amounts to computing the cross-

correlation between an input stimulus �(�, �)  and neural response �(�) ; i.e. 

%��, �� = 〈��� − �, ���(�)〉, where 〈. 〉 corresponds to averaging over time. If the 

input signal is a spectro-temporal GWN, its autocorrelation function is a pure two-

dimensional impulse, i,e, Φ��, /� = 
��, /�, since the only nonzero correlations are 

those between each time-frequency channel and itself; hence corresponding to an 

impulse function. One can in fact show that when driven with white noise, this 

cross-correlation 	%��, ��  corresponds to the impulse response of the neuron 
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(Bracewell, 1999); therefore fully determining the system function (of course, 

assuming the system obeys principles of linearity and time-invariance).  

Computing the cross-correlation  %��, �� can be technically done in a number of 

ways. The term “reverse-correlation” emphasizes the notion that one centers this 

computation around the response �(�), and looks back at the stimulus that precedes 

it (Fig. 1). As the neuron produces a spike, reverse-correlation postulates that the 

neuron must have “heard” a sensory input that it “likes”, therefore driving it to fire. 

So one looks back at the immediate past of the input just preceding the spike and 

saves it. As more spikes are generated, the inputs ���, �� preceding spikes are 

averaged out. Features that are consistently driving the neuron to fire will add up 

while features that are irrelevant will “wash-out”, leaving a crisp representation of 

the neuron’s preference of time-frequency features. Anchoring the computation 

around the system output makes reverse-correlation very adequate for spiking 

systems, such as neurons, whose outputs translate to a binary code of 0’s and 1’s; 

hence limiting the computation to only few instances when the neuron fires a spike. 

All instances during which the neuron is operating sub-threshold are irrelevant for 

this computation; since they contribute only zero to the summation. The time 

averaging operation reduces to a computation that grows linearly with the number 

of spikes generated by the neuron. One can in fact follow the evolution of this 

computation in real-time. As sound progresses over time, a sequence of stimulus 

patterns can be averaged in an online fashion each time the neuron spikes, until a 

pattern emerges; or some measure of estimation convergence is satisfied. This 

method has been applied widely throughout the neuroscience literature in studying 

behavior of sensory neurons (De Boer & Kuyper, 1968; Johnson, 1980; Jones & 

Palmer, 1987; Ringach, Sapiro, & Shapley, 1997).  

 

[Figure 1 about here] 

 

It is important to note here that the reverse-correlation method yields the second 

order Wiener kernel; which is in principle not equivalent to the second order 

Volterra kernel or the STRF as derived in Eq. 7. However, the distinction between 
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the two is often ignored as neurophysiologists often assume that the system’s order 

does not extend to higher orders �; hence making the two metrics equivalent. 

Aside from the mathematical foundation of the reverse correlation technique, it is 

important to appreciate the intuition that if the time-frequency space is sampled 

randomly and uniformly, and assuming the system is LTI, knowing how each time-

frequency bin drives a neuron gives us a complete description of the neuron’s 

behavior (De Boer & Kuyper, 1968). Aside from the absurdity of trying to reduce 

complex neurons to simple LTI systems (as discussed throughout this book), the 

spike-triggered method is further limited by its reliance on a uniform sampling of 

time-frequency space. Nevertheless, the limitations of GWN have been circumvented 

by using more interesting stimuli that share a lot of the characteristics of GWN such 

as moving ripples, TORCs or other modulated broadband sounds (Escabi & Read, 

2003; Klein, Depireux, Simon, & Shamma, 2000; Kowalski, Depireux, & Shamma, 

1996; Miller, Escabi, Read, & Schreiner, 2002). The spike-triggered averaging 

methodology has also been extended to more general sound classes such as animal 

vocalizations, natural sounds and human speech. Though it yields a biased 

representation of the STRF, compensation can be applied by normalizing the 

representation using second-order statistics of the input (Aertsen & Johannesma, 

1981; David, Mesgarani, Fritz, & Shamma, 2009; Eggermont, Aertsen, & Johannesma, 

1983; Ringach, Sapiro, & Shapley, 1997; Theunissen, Sen, & Doupe, 2000).      

 

Estimation errors 

It is clear that the receptive field is not an invariant characterization of the 

spectro-temporal properties of auditory neurons. It is an approach that is riddled 

with problems. It varies with stimulus type including bandwidth, temporal 

dynamics, intensity, richness of spectro-temporal properties or any other properties 

that determine the effectiveness of a stimulus in driving a neuron; an issue 

considered in chapter 3. It also changes with different levels of analysis (see chapter 

4), and poses great challenges for validation as a true transfer function of neurons 

(see chapter 7). Nevertheless, it remains one of the great tools available to 

neurophysiologists to provide a window (albeit narrow) into complex processing 
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taking place throughout the sensory system, particularly at the level of auditory 

cortex. 

A number of issues should however be carefully considered when working with 

the concept of STRF: (i) Sensory stimulation is a crucial component to the procedure 

of deriving receptive fields. It is a critical factor in determining whether a neuron is 

driven to its full dynamic range or under-stimulated. In addition, as has been shown 

in a number of studies, different stimulus ensembles with different spectro-

temporal characteristics appear to thrust neurons into different operating states; 

yielding STRFs that are different linearizations of the true behavior of a neuron 

around different points (Machens, Wehr, & Zador, 2004). (ii) What form of time-

frequency representation is appropriate to use when dealing with cortical neurons? 

This issue has to be carefully considered; especially at the level of auditory cortex 

where numerous investigation have demonstrated a lack of phase locking to rapidly 

changing stimuli (>30Hz). Stimuli such as ripples and broadband noises are usually 

designed with that knowledge in mind. Even natural sounds, animal vocalizations 

and speech exhibit similar slow dynamics. Such phenomenon has often justified the 

use of smooth envelope profiles of the stimulus spectrogram (or other forms of 

time-frequency representations); rather than the spectrogram itself. In doing so, the 

emergent STRF captures only the slow spectro-temporal characteristics of the sound 

that usually modulates a richer structure composed of the signal carrier and its fine-

structure interaction terms as the sound travels through the auditory pathway. 

Carefully considering the appropriate space for representing the signal can unravel 

more about processing by cortical neurons; particularly their seeming multiplexing 

ability at eliciting responses to the sound envelope, which itself gates phase-locked 

responses to the sound fine structure (Elhilali, Fritz, Klein, Simon, & Shamma, 2004). 

(iii) In most studies employing STRFs as neural measure, the linearity assumptions 

impose inclusion of only steady-state portions of the neural response. In doing so, 

one bypasses the use of the phasic behavior of neurons at onset; which is believed to 

drive the neurons around a different operating point, hence heightening the 

nonlinear behavior (Shechter, Dobbins, Marvit, & Depireux, 2009). What constitute 

steady-space response is not well understood; and this issue is further compounded 
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by processes of neural adaptation that changes the neuron’s behavior as the sensory 

input is extended over time. (iv) All derivations of receptive fields (including the 

general Volterra series approach) have an underlying assumption that the system is 

time-invariant. Such assumption is challenged by compelling experimental evidence 

for receptive field plasticity, both during development (de Villers-Sidani, Chang, Bao, 

& Merzenich, 2007; Hubel & Wiesel, 1963) and the adult brain (for review, see (J. 

Fritz, Elhilali, & Shamma, 2005; Weinberger, 2007)) or induced by arousal, 

attention, and stimulus and behavioral context. (v) The STRF is ultimately an 

average measure; how much data is needed to derive a ‘good’ estimate of a neuron’s 

STRF; depends on a number of ill-understood issues including the neuron’s 

variability, degree of nonlinearity (or alternatively the plausibility of the linearity 

assumption for that particular neuron) as well as other sources of noise or 

variability (e.g. inherent system variability, experimental noise). (vi) It is important 

to keep in mind is that STRF derivations presented earlier, based on Volterra series, 

Wiener series or reverse correlation are approximating a functional that maps a 

deterministic input ���� onto a stochastic output: a sequence of spike trains. When 

applying the methods above to the nervous system, it is customary to average the 

output process to measure the underlying spiking rate of the neuron. Such 

approximation does not come without its perils. It causes great variations in the 

estimates of the STRF function. One has to carefully consider the long-term 

variations of the spiking rate and whether time-averaging is valid for the specific 

experimental settings investigated.  

 

Interpretation of the spectro-temporal receptive field 

One of the chief impacts of the STRF technique was generalizing the concept of a 

classic response field (RF) to the spectro-temporal domain (Depireux, Simon, Klein, 

& Shamma, 2001; Escabi & Schreiner, 2002; Klein, Depireux, Simon, & Shamma, 

2000; Miller, Escabi, Read, & Schreiner, 2002; Nelken & Young, 1997; Theunissen, 

Sen, & Doupe, 2000; Yeshurun, Wollberg, Dyn, & Allon, 1985). It is greatly related to 

frequency tuning curves – a classic descriptor used to probe the spectral properties 

of a neuron; or indirectly to measure the matrix of synaptic weights to the neuron 
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from tonotopically-organized inputs. The correspondence between a frequency 

tuning curve and the spectral axis of a neuron’s STRF is not exactly one-to-one. Each 

is derived using different sets of stimuli with different dynamics and is likely 

probing the system under different states. Nevertheless, there is great agreement 

between the two. The STRF undoubtedly overcomes a number of limitations that 

beset the classic tuning curve.  

The STRF procedure operates under the assumption that the system under 

investigation integrates information linearly; but makes no assumptions about the 

relationship or independence of the spectral and temporal attributes of the 

response. As such, it is indeed more informative than the classic tuning curve. The x-

axis represents time or delay between sensory stimulation and neural response. The 

y-axis represents the frequency tuning; ideally spanning the entire range of hearing 

of the animal. It is important to note that the STRF reflects the effect of the dynamic 

spectrum of sound on the sensory neuron. It is the conjunction of its time and 

frequency characteristics, rather than just the individual contributions of each of 

them. Because of its two-dimensional construction, it can be interpreted in two 

complementary ways: rows vs. columns. The former views the STRF an array of 

frequency-dependent dynamical filters; while the later interprets the STRF as time-

dependent spectral weighting function.  

The STRF reveals numerous characteristics about the underlying sensory neuron 

investigated, all in one function:  

○ Spectral characteristics (features shared to some extent with the classic 

tuning curve): its spectral tuning, its frequency-response bandwidth, 

presence of excitatory peaks or inhibitory sidebands,  

○ Temporal characteristics: the response latency, refractoriness, modulation 

rate tuning; 

○ Spectro-temporal characteristics: frequency-modulation direction selectivity 

(for FM sweeps moving upwards or downwards). 

4. The Rosetta stone of STRFs 

In this section, we consider the interpretation of the STRF form, and in particular 
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how its temporal and spectral dimensions might be interdependent, how one can 

infer from the STRF form its sensitivity to spectral and temporal features such as 

directional and spectral bandwidth sensitivity. 

Rank and Separability 

The rank of a two dimensional function, such as an STRF, captures one aspect of 

how simple the function is. When a two dimensional function is the simple product 

of two one- dimensional functions, i.e. ℎ��, /� = ����0(/) , this captures an 

important notion of simplicity. When this occurs, the function is of rank 1. When the 

sum of two products is required, e.g. ℎ��, /� = �����0��/�+ ��(�)0�(/), the function 

is of rank 2. (In cases of rank 2 and higher, we demand that each temporal function 

��(�) be linearly independent of every other temporal function �(�), and the same 

for the spectral functions 0; otherwise we could have used a smaller number of 

terms.) A rank 2 function is clearly not as simple as a rank 1 function, but 

nevertheless can be expressed rather concisely. In general, the rank of any two 

dimensional function is the minimum number of simple products needed to 

describe the function (When the functions are approximated as discrete, the 

definition of rank is identical to the definition of the algebraic rank of a matrix). 

An STRF of rank 1, also called fully separable, can be written: 

ℎ����, /� = ����0(/)       (10) 

which has this simple interpretation: the temporal processing of the STRF is 

performed independently of the spectral processing (and of course vice versa). A 

simple model of a neuron with this property is that its spectral processing is due 

purely to inputs from presynaptic neurons with a range of center frequencies, while 

the temporal processing is due to integration in the soma of all inputs arriving from 

all dendrites. For many peripheral neurons, this model is a good one. An STRF of 

rank 1 is also called fully separable because its processing separates cleanly into 

independent spectral and temporal processing stages. The example STRF in Figure 

2a is fully separable, and this can be verified by noting that all spectral (vertical) 
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cross- sections have the same shape (the shape of the spectral function 0(/)), 

differing only in amplitude (and possible sign). Similarly, all temporal (horizontal) 

cross-sections have the same shape (the shape of the temporal function �(�)), 

differing only in amplitude (and possibly sign). 

[ Figure 2 about here ] 

An STRF of rank 2 is somewhat less simple and is somewhat less 

straightforward to interpret. 

ℎ����, /� = ����0�/� + ����0(/)      (11) 

One interpretation comes from noting that this ℎ����, /� can be written as the sum 

of two fully separable STRFs, ℎ����, /� = ����0(/) and ℎ����, /� = ����0(/). This 

implies a possible, but less than satisfying, interpretation: the neuron has exactly 

two neural inputs, each of which has a fully separable STRF, and then simply adds 

them. Below we will present more realistic interpretations, consistent with known 

physiology. An STRF described by a generic two-dimensional function would not 

necessarily have the same physiologically motivated interpretations or models. 

An STRF of general rank N can be written as the sum of N terms: 

ℎ����, /� = �����0��/�+ �����0��/�+⋯ �����0��/�  (12) 

As the rank of an STRF increases, more and more complexity is permitted. Figure 2b 

demonstrates a simulated STRF of high rank (though still well localized in time and 

spectrum). STRFs of this complexity are not seen in A1 (Klein, Simon, Depireux, & 

Shamma, 2006). In general, higher rank implies more STRF complexity. On the other 

hand, lower rank suggests there is a specific property (constraint) that causes this 

simplicity. 

 

Singular Value Decomposition Analysis of the STRF 

Singular Value Decomposition (SVD) is a method that can be applied to any finite 

dimensional matrix (e.g. a discretized version of the STRF) to establish both its rank 
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and a unique re-expression of the matrix as the sum of terms whose number is the 

rank of the matrix (Hansen, 1997; Press, Flannery, Teukolsky, & Vetterling, 1992). 

The SVD decomposition of a matrix M takes the form of the sum of N terms: 

1�� = Λ�2��3�
�� + Λ�2��3�

�� +⋯+ Λ�2��3�
��   (13) 

where N is the rank of the matrix, u and v are vectors normalized to have unit power, 

and each Λ is the term’s RMS power. If we discretize the STRF into a finite number of 

frequencies and time steps, / = 4/�5 = {/�, /�, … , /�} and � = �� = (��, … , ��), so that 

ℎ6�� , ��7 = 8ℎ��9 = ℎ(��, … , ��; /�, /�, … , /�), we see the N terms, 

hij =ΛAuA(xi)vA(tj)+ ΛBuB(xi)vB(tj)+...+ ΛZuZ(xi)vZ(tj)   (14) 

where N is the rank of the STRF, the u and v vectors are normalized to have unit 

power, and each Λ is the RMS power of its term. This is the same as Eq. 12, except 

that time and frequency have been discretized, and thus the STRF has been 

discretized also.  

What makes SVD unique among decompositions is that 1) it automatically orders 

the terms by decreasing power: ΛA > ΛB >...> ΛZ ; 2) each column uA,uB,...,uZ is 

orthogonal to all the others; 3) each row vA
T 

, vB
T 

,..., vZ
T 

is orthogonal to all the others. 

The mathematical specifics are described well in textbooks (see, e.g., (Press, 

Flannery, Teukolsky, & Vetterling, 1992) and will not be covered here. 

Mathematically, SVD is intimately related to Principle Component Analysis (PCA), 

and both are used for a variety of analytic purposes, including noise reduction 

(Hansen, 1997). Physiologically, however, (as with PCA) there is in general no 

universal physiological interpretation to specific components, since distinct 

physiological contributions to the singular value expansion are, in general, not 

constrained to be orthogonal to each other. 

Since measured STRFs are made with noisy measurements (the noise arising 

from both neural variability and instrument noise), the true rank of the STRF must 

be estimated. There are a variety of methods to do this (Stewart, 1993) but they all 

use the same conceptual framework: once the power of the noise is estimated, then 
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all SVD components with power greater than the noise can be considered signal, and 

the number of components satisfying this criterion is the estimate of the rank. This 

estimate of rank is biased (more noise results in a lower rank estimate), but it has 

been shown that for range of Signal-to-Noise ratios and the STRFs used in this study, 

noise is not an impediment to measuring high rank (Klein, Simon, Depireux, & 

Shamma, 2006). 

SVD also motivates us to recast Eq. 12 into its N terms in continuous form 

hRN(t,x)=ΛA vA(t) uA(x)+ΛB vB(t) uB(x)+...+ΛZ vZ(t)uZ(x),                                                   (15) 

where the u and v functions have unit power and each Λ is the RMS power of its 

term. Compared to Eq. 12, it more complex, but it is less arbitrary: decompositions 

of the form of Eqs. 10, 11, and 12 are not unique since amplitude can be arbitrarily 

shifted between the temporal and spectral components. In Eq. 14, all amplitude 

information is explicitly shared within each term by each Λi coefficient. When the 

technique of SVD, which is designed for discrete matrices, is applied to continuous 

two-dimensional functions, as in the case of Eq. 14, it is called the Singular Value 

Expansion (Hansen, 1997). We will go back and forth between the continuous and 

discretized versions of the STRF without loss of generality (so long as N is finite), 

depending on which formalism is more beneficial. 

There are a few important exceptions, however, to the statement above that 

there are typically no physiological interpretation to the specific components in the 

Singular Value Expansion. This occurs when one of the temporal (or spectral) 

component functions is the Hilbert Transform of another. In this case, as will be 

shown below, the two functions have identical spectral characteristics, and are 

orthogonal only because they differ in phase. 

Hilbert Transform & Partial Hilbert Transforms/Rotations 

We now discuss the Hilbert transform, a standard tool in signal processing, and 

necessary for the phenomenon of temporal symmetry. The Hilbert transform of a 

function produces the same function but with all its phase components shifted by 
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90°. This can be seen in the Fourier domain. For a function f (t) with Fourier 

transform F(ω), i.e. 

(16) 

where the Hilbert transform, designated by H or 
^ 

, is defined by  

(17) 

where ���/� is a rotation by 90° in the complex plane (the role of sgn(ω) guarantees 

that the Hilbert transform of a real function is itself a real function). This rotation of 

phase by 90° means that the Hilbert transform of any sine wave is a cosine wave, 

and the Hilbert transform of any cosine wave is the negative sine wave, but unlike 

differentiation, the amplitude is unchanged by the operation. 

An important property of the Hilbert transform is that it is orthogonal to the 

original function, and yet it still has the same frequency content (aside from the DC 

component, i.e. its mean, which is zeroed out). f^(t) is said to be “in quadrature” 

with f (t); a demonstration is illustrated in Figure 3. For the remainder of this 

section, we assume that any function f (t) which will be Hilbert transformed has 

mean zero (or has had its mean subtracted manually). 

[Figure 3 about here.] 

The double application of a Hilbert transform, since applying two successive 90° 

rotations is equivalent to one 180° rotation, is just a sign inversion. 

(18) 

It is also useful to define a partial Hilbert transform. As pointed out above, a 

Hilbert transform of a function can be viewed as a 90° rotation in a mixing angle 

plane, so one can define a partial version of the transform 
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fθ (t) = sinθ f^(t) + cosθ f(t).    (19) 

In this convention, note that 

 

Thus a partial Hilbert transform still has the same frequency content as the original 

function, but its phase “rotation” is not restricted to 90° and can be any angle on the 

complex plane. 

Physiological examples of the Hilbert transform have been demonstrated in the 

visual system, and have been named “lagged” cells (De Valois, Cottaris, Elfar, Mahon, 

& Wilson, 2000; Humphrey & Weller, 1988; Mastronarde, 1987a; Mastronarde, 

1987b). These lagged cells are located in the Lateral Geniculate Nucleus (LGN), one 

of the visual thalamic nuclei. We will continue this nomenclature and call any 

neuron whose impulse response is the Hilbert transform of another the lagged 

version of the latter. We will further generalize, and call any neuron whose impulse 

response is the partial Hilbert transform (Hilbert rotation) of another, the “partially 

lagged” version of the latter. Note that the lag is a phase lag, not a time lag. 

The full and partial Hilbert transform/rotation is not restricted to the time 

domain and is equally applicable to the spectral domain (Simon, Depireux, Klein, 

Fritz, & Shamma, 2007). 

 

Temporal Symmetry 

An important class of STRFs consists of those for which all temporal cross-

sections (i.e. each cross section at a constant spectral index xc ), of the given STRF 

are related to each other by a simple scaling, g, and rotation, è, of the same time 

function: 

(20) 
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where each scaling and rotation can depend on xc . Since this is then true for all 

spectral indices x, we call the system Temporally Symmetric and write it in the 

functional form: 

(21) 

The meaning is still the same: all temporal cross-sections are related to each other 

by a simple scaling and rotation of the same time function. There is only one 

function of t, i.e. f(t), and Hilbert rotations of it (demonstrated in Figure 4). 

[Figure 4 about here.] 

Using the definition of the Hilbert rotation Eq. 19, we can re-express Eq. 21 to 

explicitly show that a temporally symmetric STRF is rank 2 (i.e. is the sum of two 

linearly independent product terms): 

 

We will often use the form of Eq. 22, which is completely equivalent to Eq. 21. In Eq. 

22 it is explicit that a temporally symmetric STRF has rank 2 and cannot have higher 

rank. 

Temporally symmetric STRFs, because of the symmetry relating the two 

temporal functions, fall into a very special subcategory of rank 2 STRFs. For these 

hTS (t,x) = g(x) f θ (x )(t)

= g(x)cosθ (x) f (t) + g(x)sinθ (x) f̂ (t)

= f (t)gA(x) + f̂ (t)gB(x)

where

gA (x) = g(x)cosθ(x)

gB (x) = g(x)sinθ(x)

tanθ(x) = gB (x)
gA (x)

g2(x) = gA
2 (x) + gB

2 (x).

(22) 
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STRFs, it turns out there are physiological interpretations for the individual 

components. The neural benefit of temporally symmetric STRFs is to allow 

modulation spectral selectivity without also being hampered by modulation phase 

selectivity (Simon, Depireux, Klein, Fritz, & Shamma, 2007). Not also that not all 

rank 2 STRFs are temporally symmetric: there are a wide variety of simple counter-

examples (Simon, Depireux, Klein, Fritz, & Shamma, 2007). 

For systems, which are not exactly temporally symmetric but are of rank 2, or for 

systems, which have been truncated by SVD to rank 2, we can define an index of 

temporal symmetry,  ηt. This index ranges from 0 to 1, where ηt =1 for the 

temporally symmetric case and ηt =0 when the two time functions are temporally 

unrelated. First we put Eq. 22, which is explicitly rank 2, into the form of Eq. 14: 

hR2(t,x)=ΛA vA (t) uA (x)+ ΛB vB (t) uB (x)   (23) 

Since the u and v functions have unit power, we define the index of temporal 

symmetry to be the magnitude of the normalized complex inner product between 

the two temporal analytic signals (Cohen, 1995) 

(24) 

where 
* 

is the complex conjugate operator. The rank 1 case, since it is 

automatically temporally symmetric, is also given the value ηt=1. Temporal 

symmetry’s cousin, spectral symmetry, is described in (Klein, Simon, Depireux, & 

Shamma, 2006). 

 

Temporal Symmetry and Quadrant Separability 

When the STRF is separable, the Spectro-Temporal Modulation Transfer Function 

(MTFST), the two-dimensional Fourier Transform of the STRF, is also separable, 

because the Fourier transform of the STRF is given by the simple products of the 

ηt = 1
2 vA (t) + jv̂A (t)( )*

vB (t) + jv̂B (t)( )dt∫ , 
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Fourier transforms of f (t) and g(x). It was noticed that even when the STRF is not 

separable, the quadrants of the MTFST are still individually separable (Depireux, 

Simon, Klein, & Shamma, 2001; Klein, Simon, Depireux, & Shamma, 2006; Kowalski, 

Depireux, & Shamma, 1996), but neither the significance nor the origin of this 

property was well understood. It was demonstrated in (Simon, Depireux, Klein, Fritz, 

& Shamma, 2007) that when the STRF is of rank 2, quadrant separability and 

temporal symmetry are intimately related mathematically properties, manifesting 

differently as temporal symmetry in the STRF and quadrant separability in the 

MTFST.  Mathematically, quadrant separability in the MTFST can manifest in two 

other ways in a rank 2 STRF: spectral symmetry (the spectral analog of temporal 

symmetry) or total directional selectivity. To our knowledge, spectral symmetry has 

not been observed physiologically. Total directional selectivity, in contrast, has been 

much discussed in the vision literature when STRF is interpreted as the visual 

Spatio-Temporal Response Field: both temporal and spectral functions are added in 

quadrature (Adelson & Bergen, 1985; Barlow & Levick, 1965; Borst & Egelhaaf, 

1989; Chance, Nelson, & Abbott, 1998; De Valois, Cottaris, Elfar, Mahon, & Wilson, 

2000; Emerson & Gerstein, 1977; Heeger, 1993; Maex & Orban, 1996; McLean & 

Palmer, 1994; Smith, Snowden, & Milne, 1994; Suarez, Koch, & Douglas, 1995; 

Watson & Ahumada, 1985). Mathematically, quadrant separable STRF of rank 4 are 

also possible, but we are not aware of their presence in any physiological system. 

 

5. STRFs and cortical processing 

The STRF concept has proven valuable in the understanding of auditory cortical 

processing and its applications in audio systems ranging from speech and speaker 

recognition, to enhancements of speech signals and cochlear implants. Their first 

valuable contribution has been to provide an effective summary of the 

representation of sound features in the primary auditory cortex (Atencio, Sharpee, 

& Schreiner, 2008; Theunissen, Sen, & Doupe, 2000; Versnel, Kowalski, & Shamma, 

1995). A key finding has been the realization that the huge variety of auditory 

cortical responses in frequency tuning, dynamics, and other features can be 
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integrated in models of auditory processing that view the cortex as a ‘multiscale’ 

spectro-temporal analyzer that decomposes the signal into a rich representation 

that can be effectively harnessed for a variety of applications (Chi, Ru, & Shamma, 

2005). For example, complex signals such as speech and music can be analyzed in 

this cortical model to understand how phonetic information is represented 

(Mesgarani, David, Fritz, & Shamma, 2008), or how timbres of different musical 

instruments are encoded (Patil, Pressnitzer, Shamma, & Elhilali, 2012). The 

uniqueness of the representation of the different types of signals allows us further 

to separate speech from interfering noise, to detect the presence of speech 

compared to non-speech (Mesgarani, Slaney, & Shamma, 2006), and to separate 

multiple speakers (Elhilali & Shamma, 2008). 

STRFs have proven valuable in plasticity and development studies as a summary 

of a neuron’s response properties even if incomplete.  The reason is that in many 

cases, it is not the completeness of the representation that is of interest, but rather 

how the (admittedly incomplete) representation changes during behavior or 

learning. In this role, the STRF has demonstrated a robustness and versatility that 

was not initially appreciated. For instance, auditory cortical STRFs often provide an 

estimate of the relative sensitivity of a neuron to different frequencies and temporal 

dynamics. Therefore, when examining the effects of attention and learning, changes 

in neuronal responsiveness are often unpredictable in their dynamics or spectral 

configurations, or are very small and augment already very noisy responses. The 

STRF counters both of these challenges. Thus, by virtue of its generalized nature 

(not being specific to a particular feature or response dimension), changes in the 

neuronal sensitivity in one of multiple dimensions can readily be spotted and 

characterized (J. Fritz, Elhilali, Klein, & Shamma, 2003). Furthermore, these 

response changes are often very difficult to discern or interpret (as spectral or 

temporal changes) in the firing rates themselves. STRFS by their nature are 

simultaneous relative measures of a neuron’s responsiveness to many frequencies 

and dynamics. Consequently, the effect of attention and learning (and behavior in 

general) is often seen as changes in the STRF shape that can be readily interpreted 

as changes in the relative sensitivity of the neuron to different frequencies (J. B. Fritz, 
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Elhilali, & Shamma, 2005), or in the temporal parameters of the STRF such as its 

latency (J. Fritz, Elhilali, & Shamma, 2005).  

Another interesting use of the STRFs is in characterizing global response 

properties of a large population of cells or cortical areas for the purpose of 

summarizing its representational properties, and how that may change due to 

learning and plasticity. Specifically, in many situations, cortical neurons encode 

considerable details about the underlying sensory stimuli, and the encoded 

information is likely to change with stimulus context and behavioral conditions in a 

manner that is difficult to discern across large sets of single neuron data because of 

the complexity of cortical receptive fields. STRFs help overcome this problem 

because they facilitate methods of stimulus reconstruction to study how complex 

sounds are encoded in A1. In such a method, measured STRFs are used to invert the 

responses and hence map population responses to an estimate of the stimulus 

spectrogram (Mesgarani, David, Fritz, & Shamma, 2009). This enables one to 

perform a direct comparison between an original stimulus spectrogram and its 

reconstruction following learning or from responses during attention to particular 

cues in a behavioral paradigm. In fact, by estimating the fidelity of such 

reconstructions using generalized spectrally and temporally modulated noise 

stimuli, one can determine the range over which A1 neurons can faithfully encode 

such spectro-temporal features. Finally, contrasting stimulus reconstructions under 

different behavioral states can reveal a novel view of the rapid changes in spectro-

temporal response properties induced by different attentional and motivational 

states. 

There is much ongoing research to develop new STRF measurement procedures 

and structures, and to combine them with new methodologies that go beyond the 

simple methods employed earlier. For instance, generalizing the STRFs to include 

nonlinear phenomena (Atencio, Sharpee, & Schreiner, 2008; Christianson, Sahani, & 

Linden, 2008; Nagel & Doupe, 2008), inhibitory interactions (Schinkel-Bielefeld, 

David, Shamma, & Butts, 2012), and more flexible structures are among the goals 

being pursued. Also, STRFs are now being regularly estimated with a variety of 

specialized complex sounds such as bird vocalizations and speech (David, Mesgarani, 
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& Shamma, 2007; Theunissen, Sen, & Doupe, 2000), measurements that yield STRFs 

that are tailored to describe more faithfully cortical responses to these sounds. 

Furthermore, STRFs have now transcended their initial use in single unit recordings 

and are currently being widely used as a tool to summarize responses in human 

subjects recorded with fMRI (Zatorre & Belin, 2001), MEG  (Ding & Simon, 2012), 

EEG (Power, Reilly, & Lalor, 2011), and ECoG (Mesgarani & Chang, 2012). 

 

6. Conclusion 

As the divergent impressions of the seven blind men touching the elephant suggests, 

there are many ways to characterize the receptive field properties of auditory neurons, 

ranging from classical frequency response areas with responses to tone bursts covering 

a wide range of frequencies and amplitudes, to click rate tuning for temporal MTF, to 

pure amplitude tuning at CF, to STRFs derived from artificial stimuli (white noise, 

dynamic ripples, TORCs) or natural sounds.   

As this chapter shows, the STRF is a useful and powerful measure to characterize 

steady state response properties of auditory neurons, combining a broad description of 

both temporal dynamics and spectral selectivity. However, although the STRF provides 

an excellent linear characterization of complex stimulus-response transformations 

observed in neurons throughout the auditory pathway, there is considerable range in 

the degree to which neural responses can be described or approximated by a linear 

model. 

The STRF description is a very appealing approach to taming the cortical zoo of 

diverse neuronal receptive fields. The richness and variety of STRFs makes it possible to 

encode arbitrary sounds and responses can be used for stimulus reconstruction 

(Mesgarani & Chang, 2012; Mesgarani, David, Fritz, & Shamma, 2009). Even within A1 

there is considerable diversity between modules of narrow and broadly tuned neurons, 

and also laminar diversity - neurons in granular layers are “more linear” i.e. they are 

better describe by a model with one relevant stimulus feature (Sharpee, Atencio, & 

Schreiner, 2011). Input neurons in layer IV have stimulus feature preferences that are 

more separable in frequency/time space than those in supra or infra-granular levels. In 
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contrast, output layers in A1 show STRFs with more complex shapes, such as elongated 

subfields or repeating bands of excitation or suppression (Atencio & Schreiner, 2010).  

But, not all neurons in A1 have sufficient linearity in their spiking response to inputs 

that they can be well described by STRFs – nevertheless, these highly non-linear or 

“Jackson Pollock” cells may play a very important role in auditory processing. The trade-

off of the STRF approach is that you lose the ability to characterize a fairly large 

percentage of auditory responsive cells in A1. What percentage of cells in A1 have 

STRFs? Estimates of the percentage varies from ~30% to 70%, and this percentage goes 

down considerably as you move to higher cortical areas. However, there are still 

beautiful STRFs even several synapses higher up – as shown in the example neuron 

recorded from macaque monkey rostral STG (Figure 5) (see (Hackett, 2011) for 

neuroanatomical location of rSTG).   

 

[Figure 5 about here] 

 

Concern about the lack of general applicability to all cortical cells combines with 

wariness of the STRF that arises from its limited predictive power (Laudanski, Edeline, & 

Huetz, 2012), and also because of the presence of nonlinearities (spiking threshold, rate 

saturation, rectification, synaptic depression, modulation of responses by stimulus 

context, attentional effects and other state-dependent effects) that cast doubt on the 

linear assumptions underlying the STRF. Various approaches have been taken to go 

beyond the STRF by new analysis techniques that add input or output nonlinearities, 

simplified second order interaction terms, feedback kernels, spectro-temporal contrast 

kernels or  multiple feature dimensions (Ahrens, Linden, & Sahani, 2008; Atencio, 

Sharpee, & Schreiner, 2008; Calabrese, Schumacher, Schneider, Paninski, & Wooley, 

2011; Rabinowitz, Willmore, Schnupp, & King, 2012). These STRF-nonlinearity models 

represent exciting new approaches to describing neural function in A1, and generally 

also have greater predictive success.   
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The shape of STRFs depends on the choice of stimulus and properties of the stimulus 

ensemble (Aertsen & Johannesma, 1981; Blake & Merzenich, 2002; David, Mesgarani, 

Fritz, & Shamma, 2009; Laudanski, Edeline, & Huetz, 2012; Machens, Wehr, & Zador, 

2004; Theunissen, Sen, & Doupe, 2000; Valentine & Eggermont, 2004; Woolley, Gill, & 

Theunissen, 2006), and STRFs generated from the prevailing ripple stimuli generally lack 

predictive power for communication calls and other natural sounds. This realization has 

lead to the use of different stimulus classes (conspecific vocalizations, such as birdcalls 

or speech) to generate STRFs that have enhanced predictive power for the sounds in 

these classes (David, Mesgarani, & Shamma, 2007; Laudanski, Edeline, & Huetz, 2012; 

Nagel & Doupe, 2008). 

One valuable use of the STRF has been to explore the effects of selective attention on 

cortical filters (Atiani, Elhilali, David, Fritz, & Shamma, 2009; David, Fritz, & Shamma, 

2012; J. Fritz, Elhilali, Klein, & Shamma, 2003; J. B. Fritz, Elhilali, & Shamma, 2005; J. B. 

Fritz, Elhilali, & Shamma, 2007). In addition to its effect on gain control, attention also 

appears to be able to independently re-shape receptive fields by rapidly changing 

synaptic input weightings to enhance processing of relevant stimulus features. These 

dynamic task-driven changes are captured and observed in  ~60% of STRFs and have 

lead to the insight that this reshaping can be described as the convolution of the STRF 

with a contrast filter emphasizing foreground over background stimuli (J. B. Fritz, Elhilali, 

& Shamma, 2007; Mesgarani, Fritz, & Shamma, 2010).   

These results in the awake, behaving animal suggests that the STRF is highly adaptive 

and reflects top-down influences such as attention, as well as bottom-up influences 

such as statistics of the ongoing stimulus ensemble or soundscape. So, to make it more 

complicated, and interesting, the elephant in the story of the seven blind men is a 

dynamic elephant that changes shape in response to cognitive and stimulus context.    
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Figure 1: Spike-triggered averaging for estimating the spectro-temporal receptive 

field. Instances from the stimulus spectrogram that precede a spike are averaged 

together (and can be normalized by the stimulus auto-correlation) to derive an 

estimate of the tuning properties of the neuron; what spectral and temporal features 

in the input stimulus triggered the neuron to fire an action potential. 
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Figure 2: a. A simulated fully separable STRF, with spectral and temporal one-

dimensional cross-sections as inserts (all horizontal slices have the same profile, as 

do vertical slices). b. A simulated high rank STRF with no particular symmetries. c. A 

simulated temporally symmetric and quadrant separable STRF of rank 2. This 

STRF’s symmetry is not obviously visible. This STRF was created by adding to the 

STRF in a the same STRF except with the spatial cross-section shifted upward by 

3/4 octave and the temporal cross- section Hilbert-rotated (see below) by 30°. 
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Figure 3: An example of a function and its Hilbert transform. a. A function (in black) 

overlaid with its Hilbert transform (in gray); the two are orthogonal. b. The 

magnitude of the Fourier transform of the function (in black) overlaid with the 

magnitude of the Fourier transform of its Hilbert transform (in gray); they overlap 

exactly. c. The phase of the Fourier transform of the function (in black) overlaid with 

the phase of the Fourier transform of its Hilbert transform (in gray); the difference 

is exactly ±90°(dashed line). 
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Figure 4: a. The simulated temporally symmetric and quadrant separable STRF 

from Figure 1c, and five fixed-frequency cross-sections, corresponding to five 

temporal impulse responses. b. The same five impulse responses but individually 

Hilbert-rotated and rescaled. c. The same Hilbert-rotated and rescaled impulse 

responses superimposed. The Hilbert-rotation phases were calculated by taking the 

negative phase of the complex correlation coefficient between the analytic signal of 

each temporal cross-section and the analytic signal of the 4th temporal cross-

section. 
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Figure 5: Example of recording in the rostral STG of the monkey, showing an STRF 

at least 2-3 synapses beyond A1. Most neurons in rSTG (34/53 or 64%) had 

receptive fields made up of several narrow frequency bands. 

 

  

 

 


